
Kolibri developer documentation
Release 0.16.1.dev0+git.20240424234141

unknown

Apr 24, 2024

CONTENTS

1 What is Kolibri? 3

2 Table of contents 5
2.1 Contributing . 5
2.2 Getting started . 14
2.3 Tech stack overview . 24
2.4 How To Guides . 25
2.5 Frontend architecture . 32
2.6 Backend architecture . 48
2.7 Server/client communication . 100
2.8 Development workflow . 103
2.9 Build system and workflow . 107
2.10 Release process . 112
2.11 Internationalization . 112
2.12 Manual testing & QA . 121
2.13 Release Notes . 146

Python Module Index 181

Index 183

i

ii

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

These docs are for software developers wishing to contribute to Kolibri. If you are looking for help installing, config-
uring and using Kolibri, please refer to the User Guide.

CONTENTS 1

https://kolibri.readthedocs.io/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2 CONTENTS

CHAPTER

ONE

WHAT IS KOLIBRI?

Kolibri is the offline learning platform from Learning Equality. It is available for download from our website. The
code is hosted on Github and MIT-licensed.

You can ask questions, make suggestions, and report issues in the community forums. If you have found a bug and are
comfortable using Github and Markdown, you can create a Github issue following the instructions in the issue template.

3

https://learningequality.org/kolibri/
https://learningequality.org/
https://learningequality.org/download/
https://github.com/learningequality/kolibri/
https://community.learningequality.org/
https://github.com/learningequality/kolibri/issues

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

4 Chapter 1. What is Kolibri?

CHAPTER

TWO

TABLE OF CONTENTS

2.1 Contributing

2.1.1 Ways to contribute

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

Talk to us

• Get product support in our Community Forums.

• Get development contributions support in Kolibri GitHub Discussions.

• Email us at info@learningequality.org

Translate

Help us translate the application on Crowdin.

Give feedback

You can ask questions, make suggestions, and report issues in the community forums.

If you are proposing a new feature or giving feedback on an existing feature:

• Explain in detail what you’re trying to do and why the existing system isn’t working for you

• Keep the scope as narrow as possible, to make it easier to understand the specific problem you’re trying to address

If you have found a bug and are comfortable using Github and Markdown, you can create a Github issue. Please search
the existing issues first to see if it’s already been reported.

Please make sure to use the template. Replace the HTML comments (the <!-- ... -->) with the information re-
quested.

5

http://community.learningequality.org/
https://github.com/learningequality/kolibri/discussions
mailto:info@learningequality.org
https://crowdin.com/project/kolibri
https://community.learningequality.org/
https://github.com/learningequality/kolibri/issues

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Write code

See How can I contribute?

Write documentation

If you’d like to help improve Kolibri’s User Documentation, see the Kolibri docs Github repo.

You can also help improve our developer documentation that you’re reading now! These are in the main Kolibri repo.

Both our developer docs and the user docs are formatted using reStructuredText.

2.1.2 Code of Conduct

Code of Conduct

1. Purpose

A primary goal of Kolibri and KA Lite is to be inclusive to the largest number of contributors, with the most varied and
diverse backgrounds possible. As such, we are committed to providing a friendly, safe and welcoming environment for
all, regardless of gender, sexual orientation, ability, ethnicity, socioeconomic status, and religion (or lack thereof).

This code of conduct outlines our expectations for all those who participate in our community, as well as the conse-
quences for unacceptable behavior.

We invite all those who participate in Kolibri or KA Lite to help us create safe and positive experiences for everyone.

2. Open Source Citizenship

A supplemental goal of this Code of Conduct is to increase open source citizenship by encouraging participants to
recognize and strengthen the relationships between our actions and their effects on our community.

Communities mirror the societies in which they exist and positive action is essential to counteract the many forms of
inequality and abuses of power that exist in society.

If you see someone who is making an extra effort to ensure our community is welcoming, friendly, and encourages all
participants to contribute to the fullest extent, we also want to know!

3. Expected Behavior

The following behaviors are expected and requested of all community members:

• Participate in an authentic and active way. In doing so, you contribute to the health and longevity of this com-
munity.

• Exercise consideration and respect in your speech and actions.

• Attempt collaboration before conflict.

• Refrain from demeaning, discriminatory, or harassing behavior and speech.

• Be mindful of your surroundings and of your fellow participants. Alert community leaders if you notice a dan-
gerous situation, someone in distress, or violations of this Code of Conduct, even if they seem inconsequential.

• Remember that community event venues may be shared with members of the public; please be respectful to all
patrons of these locations.

6 Chapter 2. Table of contents

https://github.com/learningequality/kolibri/blob/develop/CONTRIBUTING.md
https://kolibri.readthedocs.io/en/latest/
https://github.com/learningequality/kolibri-docs
http://docutils.sourceforge.net/rst.html

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

4. Unacceptable Behavior

The following behaviors are considered harassment and are unacceptable within our community:

• Violence, threats of violence or violent language directed against another person.

• Sexist, racist, homophobic, transphobic, ableist or otherwise discriminatory jokes and language.

• Posting or displaying sexually explicit or violent material.

• Posting or threatening to post other people’s personally identifying information (“doxing”).

• Personal insults, particularly those related to gender, sexual orientation, race, religion, or disability.

• Inappropriate photography or recording.

• Inappropriate physical contact. You should have someone’s consent before touching them.

• Unwelcome sexual attention. This includes, sexualized comments or jokes; inappropriate touching, groping, and
unwelcomed sexual advances.

• Deliberate intimidation, stalking or following (online or in person).

• Advocating for, or encouraging, any of the above behavior.

• Sustained disruption of community events, including talks and presentations.

5. Consequences of Unacceptable Behavior

Unacceptable behavior from any community member, including sponsors and those with decision-making authority,
will not be tolerated.

Anyone asked to stop unacceptable behavior is expected to comply immediately.

If a community member engages in unacceptable behavior, the community organizers may take any action they deem
appropriate, up to and including a temporary ban or permanent expulsion from the community without warning (and
without refund in the case of a paid event).

6. Reporting Guidelines

If you are subject to or witness unacceptable behavior, or have any other concerns, please notify a community organizer
as soon as possible. codeofconduct@learningequality.org.

Reporting Guidelines

Additionally, community organizers are available to help community members engage with local law enforcement or
to otherwise help those experiencing unacceptable behavior feel safe. In the context of in-person events, organizers
will also provide escorts as desired by the person experiencing distress.

2.1. Contributing 7

mailto:codeofconduct@learningequality.org
http://kolibri.readthedocs.io/en/develop/contributing.html#code-of-conduct

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

7. Addressing Grievances

If you feel you have been falsely or unfairly accused of violating this Code of Conduct, you should notify Learning
Equality with a concise description of your grievance. Your grievance will be handled in accordance with our existing
governing policies.

Enforcement Manual

8. Scope

We expect all community participants (contributors, paid or otherwise; sponsors; and other guests) to abide by this Code
of Conduct in all community venues–online and in-person–as well as in all one-on-one communications pertaining to
community business.

This code of conduct and its related procedures also applies to unacceptable behavior occurring outside the scope of
community activities when such behavior has the potential to adversely affect the safety and well-being of community
members.

9. Contact info

The Code of Conduct team consists of:

• Laura Danforth (laura@learningequality.org)

• Radina Matic (radina@learningequality.org)

• Richard Tibbles (richard@learningequality.org)

Please write: codeofconduct@learningequality.org

10. License and attribution

This Code of Conduct is distributed under a Creative Commons Attribution-ShareAlike license.

Portions of text derived from the Django Code of Conduct and the Geek Feminism Anti-Harassment Policy.

Retrieved on November 22, 2016 from http://citizencodeofconduct.org/

Reporting Guidelines

If you believe someone is violating the code of conduct we ask that you report it to the Learning Equality by emailing
codeofconduct@learningequality.org. All reports will be kept confidential. In some cases we may determine that
a public statement will need to be made. If that’s the case, the identities of all victims and reporters will remain
confidential unless those individuals instruct us otherwise.

If you believe anyone is in physical danger, please notify appropriate law enforcement first. If you are unsure what law
enforcement agency is appropriate, please include this in your report and we will attempt to notify them.

If you are unsure whether the incident is a violation, or whether the space where it happened is covered by this Code of
Conduct, we encourage you to still report it. We would much rather have a few extra reports where we decide to take
no action, rather than miss a report of an actual violation. We do not look negatively on you if we find the incident is
not a violation. And knowing about incidents that are not violations, or happen outside our spaces, can also help us to
improve the Code of Conduct or the processes surrounding it.

In your report please include:

8 Chapter 2. Table of contents

http://kolibri.readthedocs.io/en/develop/contributing.html#code-of-conduct
mailto:laura@learningequality.org
mailto:radina@learningequality.org
mailto:richard@learningequality.org
mailto:codeofconduct@learningequality.org
http://creativecommons.org/licenses/by-sa/3.0/
https://www.djangoproject.com/conduct/
http://geekfeminism.wikia.com/wiki/Conference_anti-harassment/Policy
http://citizencodeofconduct.org/
mailto:codeofconduct@learningequality.org

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

1. Your contact info (so we can get in touch with you if we need to follow up)

2. Names (real, nicknames, or pseudonyms) of any individuals involved. If there were other witnesses besides you,
please try to include them as well.

3. When and where the incident occurred. Please be as specific as possible.

4. Your account of what occurred. If there is a publicly available record (e.g. a mailing list archive or a public Slack
logger) please include a link.

5. Any extra context you believe existed for the incident.

6. If you believe this incident is ongoing.

7. Any other information you believe we should have.

What happens after you file a report?

You will receive an email from the Code of Conduct committee acknowledging receipt within 48 hours (we aim to be
quicker than that).

The committee will immediately meet to review the incident and determine:

1. What happened.

2. Whether this event constitutes a code of conduct violation.

3. Who the bad actor was.

4. Whether this is an ongoing situation, or if there is a threat to anyone’s physical safety.

If this is determined to be an ongoing incident or a threat to physical safety, the committee’s immediate priority will
be to protect everyone involved. This means we may delay an “official” response until we believe that the situation has
ended and that everyone is physically safe.

Once the committee has a complete account of the events they will make a decision as to how to response. Responses
may include:

• Nothing (if we determine no violation occurred).

• A private reprimand from the committee to the individual(s) involved.

• A public reprimand.

• An imposed vacation (i.e. asking someone to “take a week off” from a mailing list or Slack).

• A permanent or temporary ban from some or all communication spaces (mailing lists, Slack, etc.)

• A request for a public or private apology.

We’ll respond within one week to the person who filed the report with either a resolution or an explanation of why the
situation is not yet resolved.

Once we’ve determined our final action, we’ll contact the original reporter to let them know what action (if any) we’ll
be taking. We’ll take into account feedback from the reporter on the appropriateness of our response, but we don’t
guarantee we’ll act on it.

2.1. Contributing 9

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Enforcement Manual

This is the enforcement manual followed by Learning Equality’s Code of Conduct Committee. It’s used when we
respond to an issue to make sure we’re consistent and fair. It should be considered an internal document, but we’re
publishing it publicly in the interests of transparency.

The Code of Conduct Committee

All responses to reports of conduct violations will be managed by a Code of Conduct Committee (“the committee”).

Learning Equality’s (LE’s) core team (“the core”) will establish this committee, comprised of at least three members.

How the committee will respond to reports

When a report is sent to the committee, a member will reply with a receipt to confirm that a process of reading your
report has started.

See the reporting guidelines for details of what reports should contain. If a report doesn’t contain enough information,
the committee will obtain all relevant data before acting. The committee is empowered to act on the LE’s behalf in
contacting any individuals involved to get a more complete account of events.

The committee will then review the incident and determine, to the best of their ability:

• what happened

• whether this event constitutes a code of conduct violation

• who, if anyone, was the bad actor

• whether this is an ongoing situation, and there is a threat to anyone’s physical safety

This information will be collected in writing, and whenever possible the committee’s deliberations will be recorded
and retained (i.e. Slack transcripts, email discussions, recorded voice conversations, etc).

The committee should aim to have a resolution agreed upon within one week. In the event that a resolution can’t
be determined in that time, the committee will respond to the reporter(s) with an update and projected timeline for
resolution.

Acting Unilaterally

If the act is ongoing or involves a threat to anyone’s safety (e.g. threats of violence), any committee member may act
immediately (before reaching consensus) to end the situation. In ongoing situations, any member may at their discretion
employ any of the tools available to the committee, including bans and blocks.

If the incident involves physical danger, any member of the committee may – and should – act unilaterally to protect
safety. This can include contacting law enforcement (or other local personnel) and speaking on behalf of Learning
Equality.

In situations where an individual committee member acts unilaterally, they must report their actions to the committee
for review within 24 hours.

10 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Resolutions

The committee must agree on a resolution by consensus. If the committee cannot reach consensus and deadlocks for
over a week, the committee will turn the matter over to the board for resolution.

Possible responses may include:

• Taking no further action (if we determine no violation occurred).

• A private reprimand from the committee to the individual(s) involved. In this case, the committee will deliver
that reprimand to the individual(s) over email, cc’ing the committee.

• A public reprimand. In this case, the committee will deliver that reprimand in the same venue that the violation
occurred (i.e. in Slack for an Slack violation; email for an email violation, etc.). The committee may choose to
publish this message elsewhere for posterity.

• An imposed vacation (i.e. asking someone to “take a week off” from a mailing list or Slack). The committee
will communicate this “vacation” to the individual(s). They’ll be asked to take this vacation voluntarily, but if
they don’t agree then a temporary ban may be imposed to enforce this vacation.

• A permanent or temporary ban from some or all Learning Equality spaces (mailing lists, Slack, etc.). The
committee will maintain records of all such bans so that they may be reviewed in the future, extended to new
Learning Equality fora, or otherwise maintained.

• A request for a public or private apology. The committee may, if it chooses, attach “strings” to this request: for
example, the committee may ask a violator to apologize in order to retain his or her membership on a mailing
list.

Once a resolution is agreed upon, but before it is enacted, the committee will contact the original reporter and any other
affected parties and explain the proposed resolution. The committee will ask if this resolution is acceptable, and must
note feedback for the record. However, the committee is not required to act on this feedback.

Finally, the committee will make a report for the core team.

The committee will never publicly discuss the issue; all public statements will be made by the core team.

Conflicts of Interest

In the event of any conflict of interest a committee member must immediately notify the other members, and recuse
themselves if necessary.

Attribution

Reporting Guidelines and Enforcement Manual are both distributed under a Creative Commons Attribution-ShareAlike
license.

Reporting Guidelines and Enforcement Manual are both derived from the Django’ Reporting Guidelines and Django’
Enforcement Manual

Changes made to the original doc: Instead of involving a board as DSF has, the core team at Learning Equality is
considered. Instead of IRC, we refer to Slack. The Code of Conduct Committee does not have a single chair but acts
as a group to make conflicts of interest easier, and to avoid problems in case of absence of the chair person. Instead
of interchanging “working group” and “committee” notation, we replaced all occurrences of “working group” and
“group” with “committee”.

2.1. Contributing 11

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://www.djangoproject.com/conduct/reporting/
https://www.djangoproject.com/conduct/enforcement-manual/
https://www.djangoproject.com/conduct/enforcement-manual/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.1.3 Contributors

Kolibri is copyright Learning Equality and other contributors, and is released under the MIT License.

If you have contributed to Kolibri, feel free to add your name and Github account to this list:

Name Github user
Eli Dai 66eli77
Adam Stasiw AdamStasiw
Akshay Mahajan akshaymahajans
Alan Chen alanchenz
Alexandros Metaxas alexMet
Apurva Modi apurva-modi
Eduard James Aban arceduardvincent
Arky arky
Aron Fyodor Asor aronasorman
Ashmeet Lamba ashmeet13
Kapya Aypak
Benjamin Bach benjaoming
Blaine Jester bjester
Boni Ðukić bonidjukic
Brian Kwon br-kwon
Brandon Nguyen bransgithub
John BruvaJ
Chao-Wen Tan chaowentan
Christian Memije christianmemije
Connor Robertson conconrob
Cyril Pauya cpauya
Chris Castle crcastle
David Garg davidgarg20
David Hu divad12
Derek Lobo dlobo
David Cañas DXCanas
Dylan McCall dylanmccall
Mingqi Zhu EmanekaT
Gerardo Soto GCodeON
Geoff Rich geoffrey1218
Hans Gamboa HansGam
Devon Rueckner indirectlylit

•
inflrscns

Ivan Savov ivanistheone
Jamie Alexandre jamalex
Jason Tame JasonTame
Jordan Yoshihara jayoshih
Jessica Aceret jessicaaceret
Jonathan Boiser jonboiser
José L. Redrejo Rodríguez jredrejo
Jessica Aceret jtamiace
Julián Duque julianduque
Karla Avila k2avila
Maxime Brunet maxbrunet

continues on next page

12 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Table 1 – continued from previous page
Name Github user
Mrinal Kumar kmrinal19
Kevin Ollivier kollivier
Paul Luna luna215
Lingyi Wang lyw07
Magali Boizot-Roche magali-br

•
manuq

Marcella Maki marcellamaki
Maureen Hernandez MauHernandez
Michael Gallaspy MCGallaspy
Leo Lin mdctleo
Metodi Milev metodimilevqa
Michael Gamlem III mgamlem3
Micah Fitch micahscopes
Michaela Robosova MisRob
Eduard James Aban mrpau-eduard
Eugene Oliveros mrpau-eugene
Julius legaspi mrpau-julius
Richard Amodia mrpau-richard
Nick Cannariato nickcannariato
Jacob Pierce nucleogenesis
Paul Bussé paulbusse
Petar Cenov pcenov
Philip Withnall pwithnall
Radina Matic radinamatic
Rafael Aguayo ralphiee22
Hyun Ahn rationality6
Rachel Kim rayykim
Richard Tibbles rtibbles
Sairina Merino Tsui sairina
Shanavas M shanavas786

•
shivangtripathi

Udith Prabhu udithprabhu
Whitney Zhu whitzhu
Carol Willing willingc
Yash Jipkate YashJipkate
Yixuan Liu yil039
Jaideep Sharma camperjett
Allan Otodi AllanOXDi
Liana Harris LianaHarris360
Rishi Kejriwal Kej-r03
Siddhanth Rathod siddhanthrathod
Akila Induranga akila-i
Sahajpreet Singh photon0205
Nishant Shrivastva shrinishant
Amelia Breault thanksameeelian
Vikramaditya Singh Ghat0tkach

continues on next page

2.1. Contributing 13

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Table 1 – continued from previous page
Name Github user
Kris Katkus katkuskris
Garvit Singhal GarvitSinghal47
Adars T S a6ar55
Shivang Rawat ShivangRawat30
Alex Vélez AlexVelezLl
Mazen Oweiss moweiss
Eshaan Aggarwal EshaanAgg
Nikhil Sharma ThEditor

2.2 Getting started

First of all, thank you for your interest in contributing to Kolibri! The project was founded by volunteers dedicated to
helping make educational materials more accessible to those in need, and every contribution makes a difference. The
instructions below should get you up and running the code in no time!

2.2.1 Prerequisites

Most of the steps below require entering commands into your Terminal, so you should expect to become comfortable
with this if you’re not already.

If you encounter issues:

• Searching online is often effective: chances are high that someone else encountered similar issues in the past

• Please let us know if our docs can be improved, either by filing an issue or submitting a PR!

Note: Theoretically, Windows can be used to develop Kolibri, but we haven’t done much testing with it. If you’re
running Windows, you are likely to encounter some issues with this guide, and we’d appreciate any help improving
these docs for Windows developers!

Git and GitHub

1. Install and set up Git on your computer. Try this tutorial if you need more practice with Git!

2. Sign up and configure your GitHub account if you don’t have one already.

3. Fork the main Kolibri repository. This will make it easier to submit pull requests. Read more details about
forking from GitHub.

4. Important: Install and set up the Git LFS extension.

Tip: Register your SSH keys on GitHub to avoid having to repeatedly enter your password

14 Chapter 2. Table of contents

https://help.github.com/articles/set-up-git/
http://learngitbranching.js.org/
https://github.com/join
https://github.com/learningequality/kolibri
https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
https://help.github.com/en/articles/connecting-to-github-with-ssh

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Checking out the code

First, clone your Kolibri fork to your local computer. In the command below, replace $USERNAMEwith your own GitHub
username:

git clone git@github.com:$USERNAME/kolibri.git

Next, initialize Git LFS:

cd kolibri # Enter the Kolibri directory
git lfs install

Finally, add the Learning Equality repo as a remote called upstream. That way you can keep your local checkout updated
with the most recent changes:

git remote add upstream git@github.com:learningequality/kolibri.git
git fetch --all # Check if there are changes upstream
git checkout -t upstream/develop # Checkout the development branch

Python and Pip

To develop on Kolibri, you’ll need:

• Python 3.6+ (Kolibri doesn’t currently support Python 3.12.0 or higher)

• pip

Managing Python installations can be quite tricky. We highly recommend using pyenv or if you are more comfortable
using a package manager, then package managers like Homebrew on Mac or apt on Debian for this.

To install pyenv see the detailed instructions here Installing pyenv.

Warning: Never modify your system’s built-in version of Python

Python virtual environment

You should use a Python virtual environment to isolate the dependencies of your Python projects from each other and
to avoid corrupting your system’s Python installation.

There are many ways to set up Python virtual environments: You can use pyenv-virtualenv as shown in the instructions
below; you can also use Virtualenv, Virtualenvwrapper Pipenv, Python 3 venv, Poetry etc.

Note: Most virtual environments will require special setup for non-Bash shells such as Fish and ZSH.

To setup and start using pyenv-virtualenv, follow the instructions here Using pyenv-virtualenv.

Once pyenv-virtualenv is installed, you can use the following commands to set up and use a virtual environment from
within the Kolibri repo:

pyenv virtualenv 3.9.9 kolibri-py3.9 # can also make a python 2 environment
pyenv activate kolibri-py3.9 # activates the virtual environment

2.2. Getting started 15

https://pypi.python.org/pypi/pip
https://github.com/pyenv/pyenv
http://brew.sh/
https://github.com/pyenv/pyenv-virtualenv
https://virtualenv.pypa.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://pipenv.readthedocs.io/en/latest/
https://docs.python.org/3/library/venv.html
https://poetry.eustace.io

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Now, any commands you run will target your virtual environment rather than the global Python installation. To deac-
tivate the virtualenv, simply run:

pyenv deactivate

(Note that you’ll want to leave it activated for the remainder of the setup process)

Warning: Never install project dependencies using sudo pip install ...

Environment variables

Environment variables can be set in many ways, including:

• adding them to a ~/.bash_profile file (for Bash) or a similar file in your shell of choice

• using a .env file for this project, loaded with Pipenv

• setting them temporarily in the current Bash session using EXPORT or similar (not recommended except for
testing)

There are two environment variables you should plan to set:

• KOLIBRI_RUN_MODE is required.

This variable is sent to our pingback server (private repo), and you must set it to something besides an empty
string. This allows us to filter development work out of our usage statistics. There are also some special testing
behaviors that can be triggered for special strings, as described elsewhere in the developer docs and integration
testing Gherkin scenarios.

For example, you could add this line at the end of your ~/.bash_profile file:

export KOLIBRI_RUN_MODE="dev"

• KOLIBRI_HOME is optional.

This variable determines where Kolibri will store its content and databases. It is useful to set if you want to have
multiple versions of Kolibri running simultaneously.

Install Python dependencies

To install Kolibri project-specific dependencies make sure you’re in the kolibri directory and your Python virtual
environment is active. Then run:

required
pip install -r requirements.txt --upgrade
pip install -r requirements/dev.txt --upgrade
pip install -e .

optional
pip install -r requirements/test.txt --upgrade
pip install -r requirements/docs.txt --upgrade

Note that the --upgrade flags above can usually be omitted to speed up the process.

16 Chapter 2. Table of contents

https://pipenv.kennethreitz.org/en/latest/advanced/#automatic-loading-of-env
https://github.com/learningequality/nutritionfacts
https://github.com/learningequality/nutritionfacts/blob/b150ec9fd80cd0f02c087956fd5f16b2592f94d4/nutritionfacts/views.py#L125-L179
https://github.com/learningequality/nutritionfacts/blob/b150ec9fd80cd0f02c087956fd5f16b2592f94d4/nutritionfacts/views.py#L125-L179

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Install Node.js, Yarn and other dependencies

1. Install Node.js (version 18.x is required)

2. Install Yarn

3. Install non-python project-specific dependencies

For a more detailed guide to using nodeenv see Using nodeenv.

The Python project-specific dependencies installed above will install nodeenv, which is a useful tool for using specific
versions of Node.js and other Node.js tools in Python environments. To setup Node.js and Yarn within the Kolibri
project environment, ensure your Python virtual environment is active, then run:

node.js, npm, and yarn
If you are setting up the release-v0.15.x branch or earlier:
nodeenv -p --node=10.17.0
If you are setting up the develop branch:
nodeenv -p --node=18.19.0
npm install -g yarn

other required project dependencies
yarn install

Database setup

To initialize the database run the following command:

kolibri manage migrate

2.2.2 Running the server

Development server

To start up the development server and build the client-side dependencies, use the following command:

yarn run devserver

This will take some time to build the front-end assets, after which you should be able to access the server at http://
127.0.0.1:8000/.

Alternatively, you can run the devserver with hot reload enabled using:

yarn run devserver-hot

Tip: Running the development server to compile all client-side dependencies can take up a lot of system resources. To
limit the specific frontend bundles that are built and watched, you can pass keywords to either of the above commands
to only watch those.

yarn run devserver-hot learn

Would build all assets that are not currently built, and run a devserver only watching the Learn plugin.

2.2. Getting started 17

https://nodejs.org/en/download/
https://yarnpkg.com/
https://vue-loader.vuejs.org/guide/hot-reload.html

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

yarn run devserver core,learn

Would run the devserver not in hot mode, and rebuild the core Kolibri assets and the Learn plugin.

For a complete reference of the commands that can be run and what they do, inspect the scripts section of the root
./package.json file.

Warning: Some functionality, such as right-to-left language support, is broken when hot-reload is enabled

Tip: If you get an error similar to “Node Sass could not find a binding for your current environment”, try running npm
rebuild node-sass

Production server

In production, content is served through Whitenoise. Frontend static assets are pre-built:

first build the assets
yarn run build

now, run the Django production server
kolibri start

Now you should be able to access the server at http://127.0.0.1:8080/.

Kolibri has support for being run as a Type=notify service under systemd. When doing so, it is recommended to run
kolibri start with the --skip-update option, and to run kolibri configure setup separately beforehand
to handle database migrations and other one-time setup steps. This avoids the kolibri start command timing out
under systemd if migrations are happening.

Separate servers

If you are working mainly on backend code, you can build the front-end assets once and then just run the Python
devserver. This may also help with multi-device testing over a LAN.

first build the front-end assets
yarn run build

now, run the Django devserver
yarn run python-devserver

You can also run the Django development server and webpack devserver independently in separate terminal windows.
In the first terminal you can start the django development server:

yarn run python-devserver

and in the second terminal, start the webpack build process for frontend assets:

yarn run frontend-devserver

18 Chapter 2. Table of contents

http://whitenoise.evans.io/en/stable/
https://www.freedesktop.org/software/systemd/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Running in App Mode

Some of Kolibri’s functionality will differ when being run as a mobile app. In order to run the development server in
that “app mode” context, you can use the following commands.

run the Python "app mode" server and the frontend server together:
yarn run app-devserver

you may also run the python "app mode" server by itself
this will require you to run the frontend server in a separate terminal
yarn run app-python-devserver

This will run the script located at integration_testing/scripts/run_kolibri_app_mode.py. There you may
change the port, register app capabilities (ie, os_user) and make adjustments to meet your needs.

When the app development server is started, you will see a message with a particular URL that you will need to use
in order to initialize your browser session properly. Once your browser session has been initialized for use in the app
mode, your browser session will remain in this mode until you clear your cookies, even if you’ve started your normal
Kolibri development server.

[app-python-devserver] Kolibri running at: http://127.0.0.1:8000/app/api/initialize/
→˓6b91ec2b697042c2b360235894ad2632

2.2.3 Editor configuration

We have a project-level .editorconfig file to help you configure your text editor or IDE to use our internal conventions.

Check your editor to see if it supports EditorConfig out-of-the-box, or if a plugin is available.

2.2.4 Vue development tools

Vue.js devtools (Legacy) is a browser plugin that is very helpful when working with Vue.js components and Vuex.
Kolibri is using Vue 2, so be sure to find the “Legacy” plugin as the latest version of the extension is for Vue 3.

To ensure a more efficient workflow, install appropriate editor plugins for Vue.js, ESLint, and stylelint.

2.2.5 Sample resources and data

Once you have the server running, proceed to import some channels and resources. To quickly import all available and
supported Kolibri resource types, use the token nakav-mafak for the Kolibri QA channel (~350MB).

Now you can create users, classes, lessons, etc manually. To auto-generate some sample user data you can also run:

kolibri manage generateuserdata

2.2. Getting started 19

http://editorconfig.org/#download
https://devtools.vuejs.org/guide/installation.html
https://kolibri-beta.learningequality.org/en/learn/#/topics/95a52b386f2c485cb97dd60901674a98

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.2.6 Linting and auto-formatting

Manual linting and formatting

Linting and code auto-formatting are done by Prettier and Black.

You can manually run the auto-formatters for the frontend using:

yarn run lint-frontend:format

Or to check the formatting without writing changes, run:

yarn run lint-frontend

The linting and formatting for the backend is handled using pre-commit below.

Pre-commit hooks

A full set of linting and auto-formatting can also be applied by pre-commit hooks. The pre-commit hooks are identical
to the automated build check by Travis CI in Pull Requests.

pre-commit is used to apply a full set of checks and formatting automatically each time that git commit runs. If there
are errors, the Git commit is aborted and you are asked to fix the error and run git commit again.

Pre-commit is already installed as a development dependency, but you also need to enable it:

pre-commit install

To run all pre-commit checks in the same way that they will be run on our Github CI servers, run:

pre-commit run --all-files

Tip: As a convenience, many developers install linting and formatting plugins in their code editor (IDE). Installing
ESLint, Prettier, Black, and Flake8 plugins in your editor will catch most (but not all) code-quality checks.

Tip: Pre-commit can have issues running from alternative Git clients like GitUp. If you encounter problems while
committing changes, run pre-commit uninstall to disable pre-commit.

Warning: If you do not use any linting tools, your code is likely fail our server-side checks and you will need to
update the PR in order to get it merged.

20 Chapter 2. Table of contents

http://pre-commit.com/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.2.7 Design system

We have a large number of reusable patterns, conventions, and components built into the application. Review the
Kolibri Design System to get a sense for the tools at your disposal, and to ensure that new changes stay consistent with
established UI patterns.

2.2.8 Updating documentation

First, install some additional dependencies related to building documentation output:

pip install -r requirements/docs.txt
pip install -r requirements/build.txt

To make changes to documentation, edit the rst files in the kolibri/docs directory and then run:

make docs

You can also run the auto-build for faster editing from the docs directory:

cd docs
sphinx-autobuild --port 8888 . _build

Now you should be able to preview the docs at http://127.0.0.1:8888/.

2.2.9 Automated testing

Kolibri comes with a Javascript test suite based on Jest. To run all front-end tests:

yarn run test

Kolibri comes with a Python test suite based on pytest. To run all back-end tests:

pytest

To run specific tests only, you can add the filepath of the file. To further filter either by TestClass name or test method
name, you can add -k followed by a string to filter classes or methods by. For example, to only run a test named
test_admin_can_delete_membership in kolibri/auth/test/test_permissions.py:

pytest kolibri/auth/test/test_permissions -k test_admin_can_delete_membership

To only run the whole class named MembershipPermissionsTestCase in kolibri/auth/test/test_permissions.py:

pytest kolibri/auth/test/test_permissions -k MembershipPermissionsTestCase

For more advanced usage, logical operators can also be used in wrapped strings, for example, the following will run
only one test, named test_admin_can_delete_membership in the MembershipPermissionsTestCase class in
kolibri/auth/test/test_permissions.py:

pytest kolibri/auth/test/test_permissions -k "MembershipPermissionsTestCase and test_
→˓admin_can_delete_membership"

You can also use tox to setup a clean and disposable environment:

2.2. Getting started 21

https://design-system.learningequality.org/
https://jestjs.io/
https://docs.pytest.org/en/latest/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

tox -e py3.4 # Runs tests with Python 3.4

To run Python tests for all environments, use simply tox. This simulates what our CI also does on GitHub PRs.

Note: tox reuses its environment when it is run again. If you add anything to the requirements, you will want to either
delete the .tox directory, or run tox with the -r argument to recreate the environment

2.2.10 Manual testing

All changes should be thoroughly tested and vetted before being merged in. Our primary considerations are:

• Performance

• Accessibility

• Compatibility

• Localization

• Consistency

For more information, see the next section on Manual testing & QA.

2.2.11 Submitting a pull request

Here’s a very simple scenario. Below, your remote is called origin, and Learning Equality is le.

First, create a new local working branch:

checkout the upstream develop branch
git checkout le/develop
make a new feature branch
git checkout -b my-awesome-changes

After making changes to the code and committing them locally, push your working branch to your fork on GitHub:

git push origin my-awesome-changes

Go to Kolibri’s GitHub page, and create a the new pull request.

Note: Please fill in all the applicable sections in the PR template and DELETE unecessary headings

Another member of the team will review your code, and either ask for updates on your part or merge your PR to Kolibri
codebase. Until the PR is merged you can push new commits to your branch and add updates to it.

Learn more about our Development workflow and Release process

22 Chapter 2. Table of contents

https://github.com/learningequality/kolibri

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.2.12 Development using Docker

Engineers who are familiar with Docker can start a Kolibri instance without setting up the full JavaScript and Python
development environments on the host machine.

For more information, see the docker directory and the docker-* commands in the Makefile.

Development server

Start the Kolibri devserver running inside a container:

only needed first time
make docker-build-base

takes a few mins to run pip install -e + webpack build
make docker-devserver

Building a pex file

Note: The easiest way to obtain a pex file is to submit a Github PR and download the built assets from buildkite.

If you want to build and run a pex from the Kolibri code in your current local source files without relying on the github
and the buildkite integration, you can run the following commands to build a pex file:

make docker-whl

The pex file will be generated in the dist/ directory. You can run this pex file using the production server approach
described below.

Production server

You can start a Kolibri instance running any pex file by setting the appropriate environment variables in your local copy
of docker/env.list then running the commands:

only needed first time
make docker-build-base

run demo server
make docker-demoserver

The choice of pex file can be controlled by setting environment variables in the file ./docker/env.list:

• KOLIBRI_PEX_URL: Download URL or the string default

• DOCKERMNT_PEX_PATH: Local path such as /docker/mnt/nameof.pex

2.2. Getting started 23

https://pex.readthedocs.io/en/latest/whatispex.html

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.3 Tech stack overview

Kolibri is a web application built primarily using Python on the server-side and JavaScript on the client-side.

Note that since Kolibri is still in development, the APIs are subject to change, and a lot of code is still in flux.

2.3.1 Server

The server is a Django application, and contains only pure-Python (3.6+) dependencies at run-time. It is responsible
for:

• Interfacing with the database (either SQLite or PostgreSQL)

• Authentication and permission middleware

• Routing and handling of API calls, using the Django REST Framework

• Top-level URL routing between high-level sections of the application

• Serving basic HTML wrappers for the UI with data bootstrapped into the page

• Serving additional client assets such as fonts and images

2.3.2 Client

The frontend user interface is built using Vue and uses ES6 syntax transpiled by Bublé. The client is responsible for:

• Compositing and rendering the UI

• Managing client-side state using Vuex

• Interacting with the server through the API

2.3.3 Developer docs

Documentation is formatted using reStructuredText and the output is compiled by Sphinx and hosted on Read the Docs.

Additionally, information about the design and implementation of Kolibri might be found on Google Drive, Github,
Trello, Slack, InVision, mailing lists, office whiteboards, and lurking in the fragmented collective consciousness of our
team and contributors.

2.3.4 Build infrastructure

We use a combination of both Node.js and Python scripts to transform our source code as-written to the code that is
run in a browser. This process involves webpack, plus a number of both custom and third-party extensions.

Preparation of client-side resources involves:

• ES6 to ES5

• Transforming Vue.js component files (*.vue) into JS and CSS

• SCSS to CSS

• Auto-prefixing CSS

• Bundling multiple JS dependencies into single files

• Minifying and compressing code

24 Chapter 2. Table of contents

https://www.python.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://www.djangoproject.com/
https://www.sqlite.org/index.html
https://www.postgresql.org/
http://www.django-rest-framework.org/
https://vuejs.org/
https://buble.surge.sh/guide/
https://vuex.vuejs.org/
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/stable/rest.html
http://kolibri-dev.readthedocs.io/
https://nodejs.org/en/
https://webpack.github.io/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• Bundle resources such as fonts and images

• Generating source maps

• Providing mechanisms for decoupled “Kolibri plugins” to interact with each other and asynchronously load
dependencies

The Makefile contains the top-level commands for building Python distributions, in particular wheel files (make dist)
and pex files (make pex).

The builds are automated using buildkite, whose top-level configuration lives in the Kolibri repo. Other platform distri-
butions such as Windows, Debian, and Android are built from the wheel files and maintained in their own repositories.

2.3.5 Automated testing

We use a number of mechanisms to help encourage code quality and consistency. Most of these are run automatically
on Github pull requests, and developers should run them locally too.

• pre-commit is run locally on git commit and enforces a variety of code conventions

• We use EditorConfig to help developers set their editor preferences

• tox is used to run our test suites under a range of Python and Node environment versions

• sphinx-build -b linkcheck checks the validity of documentation links

• pytest runs our Python unit tests. We also leverage the Django test framework.

• In addition to building client assets, webpack runs linters on client-side code: ESLint for ES6 JavaScript, Stylelint
for SCSS, and HTMLHint for HTML and Vue.js components.

• Client-side code is tested using Jest

• codecov reports on the test coverage

• We have Sentry clients integrated (off by default) for automated error reporting

2.4 How To Guides

These guides are step by step guides for common tasks in getting started and working on Kolibri.

2.4.1 Installing pyenv

Prerequisites

Git installed.

2.4. How To Guides 25

https://pythonwheels.com/
https://pex.readthedocs.io/en/latest/
https://buildkite.com/learningequality
https://github.com/learningequality/kolibri-installer-windows
https://github.com/learningequality/kolibri-installer-debian
https://github.com/learningequality/kolibri-installer-android/issues
http://pre-commit.com/
http://editorconfig.org/
https://tox.readthedocs.io/en/latest/
http://pytest.org/latest/
https://docs.djangoproject.com/en/1.11/topics/testing/
https://webpack.github.io/
http://eslint.org/
https://stylelint.io/
http://htmlhint.com/
https://facebook.github.io/jest/
https://codecov.io/
https://docs.sentry.io/
https://git-scm.com/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Install

First check to see if you already have pyenv installed by running this in a terminal window:

pyenv

If it is already installed, either update it using pyenv update or using the package manager that you used to install it.

If it is not installed you can install it using the following command, pasted into a new terminal window:

curl https://pyenv.run | bash

The output of the command tells you to add certain lines to your startup files for your terminal sessions. Follow the
PyEnv setup instructions copied below - if you are unsure which section to follow, you are probably using a bash shell.

• For bash:

Stock Bash startup files vary widely between distributions/operating systems in terms of which of them source
which startup files, under what circumstances, in what order and what additional configuration they perform. As
such, the most reliable way to get Pyenv in all environments is to append Pyenv configuration commands to both
.bashrc (for interactive shells) and the profile file that Bash would use (for login shells).

First, add the commands to ~/.bashrc:

echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bashrc
echo 'command -v pyenv >/dev/null || export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.
→˓bashrc
echo 'eval "$(pyenv init -)"' >> ~/.bashrc
echo 'eval "$(pyenv virtualenv-init -)"' >> ~/.bashrc

Then, if you have ~/.profile, ~/.bash_profile or ~/.bash_login, add the commands there as well. If
you have none of these, add them to ~/.profile.

– to add to ~/.profile:

echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.profile
echo 'command -v pyenv >/dev/null || export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.
→˓profile
echo 'eval "$(pyenv init -)"' >> ~/.profile
echo 'eval "$(pyenv virtualenv-init -)"' >> ~/.profile

– to add to ~/.bash_profile:

echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bash_profile
echo 'command -v pyenv >/dev/null || export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.
→˓bash_profile
echo 'eval "$(pyenv init -)"' >> ~/.bash_profile
echo 'eval "$(pyenv virtualenv-init -)"' >> ~/.bash_profile

• For Zsh:

echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.zshrc
echo 'command -v pyenv >/dev/null || export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.
→˓zshrc
echo 'eval "$(pyenv init -)"' >> ~/.zshrc
echo 'eval "$(pyenv virtualenv-init -)"' >> ~/.zshrc

26 Chapter 2. Table of contents

https://github.com/pyenv/pyenv/blob/master/README.md#set-up-your-shell-environment-for-pyenv

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

If you wish to get Pyenv in noninteractive login shells as well, also add the commands to ~/.zprofile or
~/.zlogin.

• For Fish shell:

Execute this interactively:

set -Ux PYENV_ROOT $HOME/.pyenv
set -U fish_user_paths $PYENV_ROOT/bin $fish_user_paths

And add this to ~/.config/fish/config.fish:

pyenv init - | source

Bash warning: There are some systems where the BASH_ENV variable is configured to point to .bashrc. On
such systems, you should almost certainly put the eval "$(pyenv init -)" line into .bash_profile, and
not into .bashrc. Otherwise, you may observe strange behaviour, such as pyenv getting into an infinite loop.
See #264 for details.

Proxy note: If you use a proxy, export http_proxy and https_proxy, too.

Installation of pyenv on Windows

1. Run PowerShell terminal as Administrator

2. Run the following installation command in the PowerShell terminal :

Invoke-WebRequest -UseBasicParsing -Uri "https://raw.githubusercontent.com/pyenv-win/
→˓pyenv-win/master/pyenv-win/install-pyenv-win.ps1" -OutFile "./install-pyenv-win.ps1"; &
→˓"./install-pyenv-win.ps1"

If you are getting any UnauthorizedAccess error, run:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope LocalMachine

press Y not A, to execute Policy Change for this power shell only.

then run the previous command again

Restart your shell

For the PATH changes to take effect, run the following command.

exec "$SHELL"

This will give no visual indicator, but the pyenv command should now work in the terminal.

To check if pyenv is installed correctly, type:

pyenv version

2.4. How To Guides 27

https://github.com/pyenv/pyenv/issues/264

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Install Python build dependencies

Install Python build dependencies before attempting to install a new Python version.

You can now begin using Pyenv.

Installing a Python Version with PyEnv

Use the pyenv command in your terminal to install a recent version of Python:

pyenv install 3.9.9

The PyEnv installation wiki provides a list of common issues when installing Python versions on different operating
systems.

You can now activate this version of Python just for this shell session:

pyenv shell 3.9.9

Now if you check the Python version it should be 3.9.9:

python --version

See the PyEnv documentation for more detailed usage of the pyenv command.

2.4.2 Using pyenv-virtualenv

Virtual Environments

Virtual environments allow a developer to have an encapsulated Python environment, using a specific version of Python,
and with dependencies installed in a way that only affect the virtual environment. This is important as different projects
or even different versions of the same project may have different dependencies, and virtual environments allow you to
switch between them seamlessly and explicitly.

Using pyenv virtualenv with pyenv

To create a virtualenv for the Python version used with pyenv, run pyenv virtualenv, specifying the Python version
you want and the name of the virtualenv directory. For example, because we can make a virtual environment for Kolibri
using Python 3.9.9:

$ pyenv virtualenv 3.9.9 kolibri-py3.9

If you get ‘command not found’ or a similar error, and pyenv virtualenv is not installed, please follow the installation
instructions.

will create a virtualenv based on Python 3.9.9 under $(pyenv root)/versions in a folder called kolibri-py3.9.

28 Chapter 2. Table of contents

https://github.com/pyenv/pyenv/wiki#suggested-build-environment
https://github.com/pyenv/pyenv/wiki/Common-build-problems
https://github.com/pyenv/pyenv/blob/master/README.md#usage
https://github.com/pyenv/pyenv-virtualenv#installation
https://github.com/pyenv/pyenv-virtualenv#installation

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

List existing virtualenvs

pyenv virtualenvs shows you the list of existing virtualenvs and conda environments.

$ pyenv virtualenvs
3.9.9/envs/kolibri-py3.9 (created from /home/youuuu/.pyenv/versions/3.9.9)
kolibri-py3.9 (created from /home/youuuu/.pyenv/versions/3.9.9)

There are two entries for each virtualenv, and the shorter one is just a symlink.

Activate virtualenv

If you want a virtual environment to always activate when you enter a certain directory, you can use the ``pyenv local`
<https://github.com/pyenv/pyenv/blob/master/COMMANDS.md#pyenv-local>`_ command.

pyenv local kolibri-py3.9

Now whenever you enter the directory, the virtual environment will be activated.

You can also activate and deactivate a pyenv virtualenv manually:

pyenv activate kolibri-py3.9
pyenv deactivate

Delete existing virtualenv

Removing the directories in $(pyenv root)/versions and $(pyenv root)/versions/{version}/envs will
delete the virtualenv, or you can run:

pyenv uninstall kolibri-py3.9

You can also delete existing virtualenvs by using virtualenv-delete command, e.g. you can run:

pyenv virtualenv-delete kolibri-py3.9

This will delete virtualenv called kolibri-py3.9.

For more information on use of virtual environments see the pyenv-virtualenv documentation.

2.4.3 Using nodeenv

Instructions

Once you’ve created a python virtual environment, you can use nodeenv to install particular versions of node.js within
the environment. This allows you to use a different node.js version in the virtual environment than what’s available on
your host, keep multiple virtual enviroments with different versions of node.js, and to install node.js “global” modules
that are only available within the virtual environment.

First make sure your virtual environment is activated. With pyenv you can do this with:

$ pyenv activate kolibri-py3.9

If nodeenv is not already installed in your virtual environment, you can install it using this command:

2.4. How To Guides 29

https://github.com/pyenv/pyenv/blob/master/COMMANDS.md#pyenv-local
https://github.com/pyenv/pyenv-virtualenv/blob/master/README.md#usage

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

$ pip install nodeenv

If you don’t already know what version you need to install, the first step is to determine the latest node.js version for a
major release version. You can use nodeenv to list out all versions:

$ nodeenv -l

but this lists out everything. Alternatively, here’s a one line bash function that can be used to determine that version:

$ function latest-node() { curl -s "https://nodejs.org/dist/latest-v$1.x/" | egrep -m 1 -
→˓o "$1\.[0-9]+\.[0-9]+" | head -1; }
$ latest-node 18
18.19.0

Once you’ve determined the version, you can install it:

$ nodeenv --python-virtualenv --node 18.19.0
* Install prebuilt node (18.19.0) done.
* Appending data to /home/bjester/Projects/learningequality/kolibri/venv/bin/activate
* Appending data to /home/bjester/Projects/learningequality/kolibri/venv/bin/activate.
→˓fish

You’ll notice in the output above, the installation modifies the virtual environment activation scripts. Reloading the
virtual environment will ensure everything works correctly.

$ pyenv deactivate
$ pyenv activate kolibri-py3.9
$ npm install -g yarn # success

2.4.4 Rebasing a Pull Request

On certain occasions, it might be necessary to redirect a pull request from the develop branch to the latest release branch,
such as release-v* (e.g., release-v0.16.x when working on version 0.16), or vice versa. This guide outlines the
steps for rebasing a feature branch related to your pull request while maintaining a clean commit history.

The demonstration centers on the process of rebasing a feature branch that is directed towards the develop branch in
your pull request, transitioning it to the most recent release branch, identified as release-v*. If the need arises to
rebase your pull request in the opposite direction—from release-v* to develop you can follow the same steps, just
adjusting the branch names as indicated in the guide below.

• Make sure you have local versions of the develop branch and the release-v* branch.

• Ensure that both branches are up to date. For this guide, we’ll assume they are named develop and release-v*,
respectively.

Locally, checkout your feature branch and run the following rebase command:

git rebase --onto release-v* develop

This command will rebase your current feature branch onto release-v*, removing any commits that are already
present in develop.

After completing the rebase, you will need to force push to update your remote branch. Use the following command:

git push --force

30 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Caution: Handle force-pushes with care.

2.4.5 Running another Kolibri instance alongside the development server

This guide will walk you through the process of setting up and running another instance of Kolibri alongside your
development server using the pex executable.

Introduction

As Kolibri’s features continue to expand into remote content browsing, it’s often necessary to test and experiment
with another Kolibri instance running alongside your development server. One effective approach is to use the pex
executable. This workflow is straightforward and can be employed independently of ZeroTier or even internet network
access. By following these steps, you can effectively simulate real-world scenarios and enhance your development
workflow.

Steps

• Locate the .pex executable:

– Navigate to the Kolibri GitHub repository.

– Click on the “Actions” tab at the top of the repository.

– Select the “Kolibri Build Assets for Pull Request” option from the sidebar.

– Select a workflow build from the list.

– Scroll down the workflow build page to find the “Artifacts” section. In this section, you will find the .pex
file that you need to download.

• Save and unzip the .pex file:

Save the downloaded .pex file to a suitable location on your machine. Unzip the downloaded pex file to a folder
where you want to run the additional Kolibri instance from.

• Run another Kolibri instance:

First, make sure you are using Python version <= 3.9.

Then, open your terminal and navigate to the folder where you unzipped the pex file. Use the following command
to start another Kolibri instance:

KOLIBRI_HOME="<foldername>" python <filename>.pex start

Replace <filename>with the actual filename of the pex executable and replace <foldername>with the desired
name for the folder that will store the settings and data for this instance.

Be sure to choose a meaningful folder name and avoid leaving it blank to ensure it doesn’t overwrite your default
.kolibridirectory.

Note: You don’t need to create the folder beforehand; it will be automatically generated if not already present
when you run the command.

• Complete initial setup:

In the terminal, you’ll find the URL of the new Kolibri instance. Open the URL in your browser and complete
the initial device setup as you would for a regular Kolibri instance. Additionally, import a few resources from
desired channels.

2.4. How To Guides 31

https://github.com/learningequality/kolibri

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• Run your development server:

Once the additional Kolibri instance is up and running, start your development server as usual. You should now
see the new device on your network.

• Stop the other Kolibri instance:

When you’re done testing, you can stop the additional Kolibri instance using the following command:

python <filename>.pex stop

This will gracefully shut down the instance.

2.4.6 Running Kolibri with local Kolibri Design System

Kolibri uses components from Kolibri Design System (KDS). KDS is installed in Kolibri as a usual npm dependency.

It is sometimes useful to run Kolibri development server linked to local KDS repository, for example to confirm that a
KDS update fixes bug observed in Kolibri, when developing new KDS feature in support of Kolibri feature, etc.

For this purpose, Kolibri provides devserver-with-kds command that will run the development server with Kolibri
using local KDS:

yarn run devserver-with-kds <kds-path>

where <kds-path> is the path of the local kolibri-design-system repository.

It is recommended to use an absolute KDS path as some developers observed problems when running the command
with a relative path.

2.5 Frontend architecture

2.5.1 Single-page Apps

The Kolibri frontend is made of a few high-level “app” plugins, which are single-page JS applications (conventionally
app.js) with their own base URL and a single root Vue.js component. Examples of apps are ‘Learn’ and ‘User Man-
agement’. Apps are independent of each other, and can only reference components and styles from within themselves
and from core.

Each app is implemented as a Kolibri plugin (see Kolibri plugin architecture), and is defined in a subdirectory of
kolibri/plugins.

On the Server-side, the kolibri_plugin.py file describes most of the configuration for the single-page app. In
particular, this includes the base Django HTML template to return (with an empty <body>), the URL at which the app
is exposed, and the javascript entry file which is run on load.

On the client-side, the app creates a single KolibriModule object in the entry file (conventionally app.js) and registers
this with the core app, a global variable called kolibriCoreAppGlobal. The Kolibri Module then mounts single root
component to the HTML returned by the server, which recursively contains all additional components, html and logic.

32 Chapter 2. Table of contents

https://github.com/learningequality/kolibri-design-system

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Defining a new Kolibri module

Note: This section is mostly relevant if you are creating a new app or plugin. If you are just creating new components,
you don’t need to do this.

A Kolibri Module is initially defined in Python by sub-classing the WebpackBundleHook class (in kolibri.core.
webpack.hooks). The hook defines the JS entry point (conventionally called app.js) where the KolibriModule
subclass is instantiated, and where events and callbacks on the module are registered. These are defined in the events
and once properties. Each defines key-value pairs of the name of an event, and the name of the method on the
KolibriModule object. When these events are triggered on the Kolibri core JavaScript app, these callbacks will
be called. (If the KolibriModule is registered for asynchronous loading, the Kolibri Module will first be loaded, and
then the callbacks called when it is ready. See Frontend build pipeline for more information.)

All apps should extend the KolibriModule class found in kolibri/core/assets/src/kolibri_module.js.

The ready method will be automatically executed once the Module is loaded and registered with the Kolibri Core App.
By convention, JavaScript is injected into the served HTML after the <rootvue> tag, meaning that this tag should be
available when the ready method is called, and the root component (conventionally in vue/index.vue) can be mounted
here.

Creating a side nav entry

If you want to expose your new single page app as a top level navigation item in the sidebar nav, then it is necessary to
create a nav item in your plugin. This is implemented as a hook, which is a combination of the WebpackBundleHook
and a navigation hook. So it allows the creation of a navigation item frontend bundle, and signalling that this should
be included as a navigation item. Here is an example of it in use.

from kolibri.core.hooks import NavigationHook
from kolibri.plugins.hooks import register_hook

@register_hook
class ExampleNavItem(NavigationHook):

bundle_id = "side_nav"

For more information on using bundle_id and connecting it to the relevant Javascript entry point read the documentation
on the Frontend build pipeline. The entry point for the nav item should minimally do the following:

<template>

<CoreMenuOption
:label="$tr('label')"
:link="url"
icon="learn"

/>

</template>

<script>

import CoreMenuOption from 'kolibri.coreVue.components.CoreMenuOption';
import navComponents from 'kolibri.utils.navComponents';

(continues on next page)

2.5. Frontend architecture 33

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

import urls from 'kolibri.urls';

const component = {
name: 'ExampleSideNavEntry',
components: {
CoreMenuOption,

},
computed: {
url() {
return urls['kolibri:kolibri.plugins.example:example']();

},
},
priority: 5,
$tr: {
label: 'Example',

},
};

navComponents.register(component);

export default component;

</script>

This will create a navigation component which will be registered to appear in the navigation side bar.

Content renderers

A special kind of Kolibri Module is dedicated to rendering particular content types. All content renderers should
extend the ContentRendererModule class found in kolibri/core/assets/src/content_renderer_module.js. In addition,
rather than subclassing the WebpackBundleHook class, content renderers should be defined in the Python code using
the ContentRendererHook class defined in kolibri.content.hooks. In addition to the standard options for the
WebpackBundleHook, the ContentRendererHook also requires a presets tuple listing the format presets that it will
render.

Kolibri Content hooks

Hooks for managing the display and rendering of content.

class kolibri.core.content.hooks.ContentNodeDisplayHook(*args, **kwargs)
A hook that registers a capability of a plugin to provide a user interface for a content node. When subclassed,
this hook should expose a method that accepts a ContentNode instance as an argument, and returns a URL where
the interface to interacting with that node for the user is exposed. If this plugin cannot produce an interface for
this particular content node then it may return None.

class kolibri.core.content.hooks.ContentRendererHook(*args, **kwargs)
An inheritable hook that allows special behaviour for a frontend module that defines a content renderer.

render_to_page_load_async_html()

Generates script tag containing Javascript to register a content renderer.

Returns
HTML of a script tag to insert into a page.

34 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

The ContentRendererModule class has one required property getRendererComponent which should re-
turn a Vue component that wraps the content rendering code. This component will be passed files,
file, itemData, preset, itemId, answerState, allowHints, extraFields, interactive, lang,
showCorrectAnswer, defaultItemPreset, availableFiles, defaultFile, supplementaryFiles,
thumbnailFiles, contentDirection, and contentIsRtl props, defining the files associated with the piece
of content, and other required data for rendering. These will be automatically mixed into any content renderer
component definition when loaded. For more details of these props see the Content Renderer documentation.

In order to log data about users viewing content, the component should emit startTracking, updateProgress, and
stopTracking events, using the Vue $emit method. startTracking and stopTracking are emitted without any
arguments, whereas updateProgress should be emitted with a single value between 0 and 1 representing the current
proportion of progress on the content.

this.$emit('startTracking');
this.$emit('stopTracking');
this.$emit('updateProgress', 0.25);

For content that has assessment functionality three additional props will be passed: itemId, answerState, and
showCorrectAnswer. itemId is a unique identifier for that content for a particular question in the assessment,
answerState is passed to prefill an answer (one that has been previously given on an exam, or for a coach to preview
a learner’s given answers), showCorrectAnswer is a Boolean that determines if the correct answer for the question
should be automatically prefilled without user input - this will only be activated in the case that answerState is falsy
- if the renderer is asked to fill in the correct answer, but is unable to do so, it should emit an answerUnavailable
event.

The answer renderer should also define a checkAnswer method in its component methods, this method should return
an object with the following keys: correct, answerState, and simpleAnswer - describing the correctness, an object
describing the answer that can be used to reconstruct it within the renderer, and a simple, human readable answer. If no
valid answer is given, null should be returned. In addition to the base content renderer events, assessment items can
also emit a hintTaken event to indicate that the user has taken a hint in the assessment, an itemError event to indicate
that there has been an error in rendering the requested question corresponding to the itemId, and an interaction
event that indicates a user has interacted with the assessment.

{
methods: {
checkAnswer() {
return {

correct: true,
answerState: {
answer: 81,
working: '3^2 = 3 * 3',

},
simpleAnswer: '81',

};
},

},
};

2.5. Frontend architecture 35

https://design-system.learningequality.org/kcontentrenderer/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.5.2 Layout of frontend code

Frontend code and assets are generally contained in one of two places: either in one of the plugin subdirectories (under
kolibri/plugins) or in kolibri/core, which contains code shared across all plugins as described below.

Within these directories, there should be an assets directory with src and test under it. Most assets will go in src, and
tests for the components will go in test.

For example:

kolibri/
core/ # core (shared) items
assets/
src/
CoreBase.vue # global base template, used by plugins
CoreModal.vue # example of another shared component
core-global.scss # globally defined styles, included in head
core-theme.scss # style variable values
font-noto-sans.css # embedded font

test/
... # tests for core assets

plugins/
learn # learn plugin
assets/
src/
views/
LearnIndex.vue # root view
SomePage.vue # top-level client-side page
AnotherPage/ # top-level client-side page
index.vue
Child.vue # child component used only by parent

Shared.vue # shared across this plugin
app.js # instantiate learn app on client-side
router.js
store.js

test/
app.js

management/
assets/
src/
views/UserPage.vue # nested-view
views/ManagementIndex.vue # root view
app.js # instantiate mgmt app on client-side

test/
app.js

In the example above, the views/AnotherPage/index.vue file in learn can use other assets in the same directory (such
as Child.vue), components in views (such as Shared.vue), and assets in core (such as variables in core-theme.scss).
However it cannot use files in other plugin directories (such as management).

Note: For many development scenarios, only files in these directories need to be touched.

There is also a lot of logic and configuration relevant to frontend code loading, parsing, testing, and linting. This
includes webpack, NPM, and integration with the plugin system. This is somewhat scattered, and includes logic in
frontend_build/. . . , package.json, kolibri/core/webpack/. . . , and other locations. Much of this functionality is described

36 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

in other sections of the docs (such as Frontend build pipeline), but it can take some time to understand how it all hangs
together.

2.5.3 Shared core functionality

Kolibri provides a set of shared “core” functionality – including components, styles, and helper logic, and libraries –
which can be re-used across apps and plugins.

JS libraries and Vue components

The following libraries and components are available globally, in all module code:

• vue - the Vue.js object

• vuex - the Vuex object

• logging - our wrapper around the loglevel logging module

• CoreBase - a shared base Vue.js component (CoreBase.vue)

And many others. The complete specification for commonly shared modules can be found in kolibri/core/assets/
src/core-app/apiSpec.js. This object defines which modules are imported into the core object. These can then
be imported throughout the codebase - e.g.:

import Vue from 'kolibri.lib.vue';
import CoreBase from 'kolibri.coreVue.components.CoreBase';

Adding additional globally-available objects is relatively straightforward due to the plugin and webpack build system.

To expose something in the core app, add the module to the object in apiSpec.js, scoping it to the appropriate property
for better organization - e.g.:

components: {
CoreTable,

},
utils: {
navComponents,

},

These modules would now be available for import anywhere with the following statements:

import CoreTable from 'kolibri.coreVue.components.CoreTable';
import navComponents from 'kolibri.utils.navComponents';

Note: In order to avoid bloating the core api, only add modules that need to be used in multiple plugins.

2.5. Frontend architecture 37

https://github.com/pimterry/loglevel

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Styling

To help enforce style guide specs, we provide global variables that can be used throughout the codebase. This requires
including @import '~kolibri-design-system/lib/styles/definitions'; within a SCSS file or a compo-
nent’s <style> block. This exposes all variables in definitions.scss.

Dynamic core theme

Vuex state is used to drive overall theming of the application, in order to allow for more flexible theming (either for
accessibility or cosmetic purposes). All core colour styles are defined in Javascript variables kept in Vuex state, which
are then applied inline to elements using Vue.js style bindings from Vuex getters.

There are two cases where dynamic styles cannot be directly applied to DOM elements: - inline styles cannot apply
pseudo-classes (e.g. ‘:hover’, ‘:focus’, ‘::before’) - styles applied during Vue transitions

For these cases, it’s necessary to define a “computed class” using the $computedClass function. This returns an
auto-generated class name which can be used like a standard CSS class name. Under the hood, this uses Aphrodite to
create unique classes for each set of inputs given, so be careful not to abuse this feature!

In order to apply a style using a computed class, define a style object as a computed property, similarly to how you
might for a Vue.js style binding. Pseudo-selectors can be encoded within this object:

import themeMixin from 'kolibri.coreVue.mixins.themeMixin';

export default {
mixins: [themeMixin],
computed: {
pseudoStyle() {
return {
':hover': {
backgroundColor: this.$themeTokens.primaryDark,

},
};

},
},

};

Then, within the template code, this can be applied to an element or component using a Vue.js class binding, and using
the $computedClass method, referencing this style object:

<div :class="$computedClass(pseudoStyle)">I'm going to get a white background when you␣
→˓hover on me!</div>

To use computed classes for Vue.js transitions, you can use the {event}-class properties as options on the
<transition> or <transition-group> special component, and the $computedClass method can be used again:

<transition-group :move-class="$computedClass(pseudoSelector)">
<div>While moving I'll have the hover style applied!</div>

</transition-group>

38 Chapter 2. Table of contents

https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes
https://vuejs.org/v2/guide/transitions.html
https://github.com/Khan/aphrodite
https://vuejs.org/v2/api/#transition

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Bootstrapped data

The kolibriCoreAppGlobal object is also used to bootstrap data into the JS app, rather than making unnecessary
API requests.

For example, we currently embellish the kolibriCoreAppGlobal object with a urls object. This is defined by
Django JS Reverse and exposes Django URLs on the client side. This will primarily be used for accessing API Urls
for synchronizing with the REST API. See the Django JS Reverse documentation for details on invoking the Url.

Additional functionality

These methods are also publicly exposed methods of the core app:

kolibriCoreAppGlobal.register_kolibri_module_async // Register a Kolibri module for␣
→˓asynchronous loading.
kolibriCoreAppGlobal.register_kolibri_module_sync // Register a Kolibri module once␣
→˓it has loaded.
kolibriCoreAppGlobal.stopListening // Unbind an event/callback pair␣
→˓from triggering.
kolibriCoreAppGlobal.emit // Emit an event, with optional␣
→˓args.

2.5.4 Vue components

We leverage Vue.js components as the primary building blocks for our UI. For general UI development work, this is
the most common tool a developer will use. It would be prudent to read through the Vue.js guide thoroughly.

Each component contains HTML with dynamic Vue.js directives, styling which is scoped to that component (written
using SCSS), and logic which is also scoped to that component (all code, including that in Vue components should be
written using Bublé compatible ES2015 JavaScript).

Components allow us to define new custom tags that encapsulate a piece of self-contained, re-usable UI functionality.
When composed together, they form a tree structure of parents and children. Each component has a well-defined
interface used by its parent component, made up of input properties, events and content slots. Components should
never reference their parent.

Read through the Frontend code conventions for further guidelines on writing components.

Design system

Our design system contains reusable patterns and components that should be used whenever possible to maintain UI
consistency and avoid duplication of effort.

2.5. Frontend architecture 39

https://github.com/ierror/django-js-reverse
https://vuejs.org/guide/components.html
https://vuejs.org/guide/
https://sass-lang.com/
https://buble.surge.sh/guide/#supported-features
https://vuejs.org/guide/components.html#Props
https://vuejs.org/guide/components.html#Custom-Events
https://vuejs.org/guide/components.html#Content-Distribution-with-Slots
http://kolibribeta.learningequality.org/design

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

SVG Icons

Icons in Kolibri should be accessed through the <KIcon> component. The icons available can be found and searched
at Kolibri Design System.

Each icon is associated with a token, which is passed to <KIcon> and other Kolibri Design System components which
accept an icon or iconAfter prop such as KIconButton.

<!--
embed https://material.io/resources/icons/?search=add_circl&icon=add_circle_outline&

→˓style=baseline
-->
<KIcon :icon="add" />

2.5.5 Frontend code conventions

Establishing code conventions is important in order to keep a more consistent codebase. Therefore the goal for the
tools and principles below is to help ensure any committed code is properly aligned with the conventions.

For design conventions, see the Kolibri Design System.

Linting and auto formatting

Many of our conventions are enforced through various linters including ESLint, ESLint Vue plugin, stylelint, and
HTMLHint. The enforced rules are located in the .eslintrc.js, .stylelintrc.js, and .htmlhintrc files located
at the root of the project.

Also available are options and tools that enable auto-formatting of .vue, .js, .scss, and .py files to conform to
code conventions. To facilitate this, we use Black to auto-format .py files, and Prettier to auto-format the others.
Auto-formatting runs by default while running the dev server, otherwise be sure to run the dev server with -warn as
described in Getting started to prevent it from auto-formatting.

In addition, pre-commit hooks can be installed to perform linting and auto-formatting. To enable the hooks, be sure
to follow the directions described in Getting started.

You can also install the appropriate editor plugins for the various linters to see linting warnings/errors inline.

Vue.js components

• Make sure to follow the official Vue.js style guide when creating Vue components.

• Keep components stateless and declarative as much as possible

• For simple components, make SomeComonent.vue. For more complex components, make SomeCompo-
nent/index.vue and add private sub-components

• All user-visible app text should be internationalized. See Internationalization for details

• Avoid direct DOM references and Vue component “lifecycle events” except in special cases

• Props, slots, and Vuex state/getters for communicating down the view hierarchy

• Events and Vuex actions for communicating up the view hierarchy

• If possible, use <template/> for conditionals to avoid extra unnecessary nested elements.

40 Chapter 2. Table of contents

https://kolibri-design-system.netlify.app/icons/
http://kolibribeta.learningequality.org/design
https://eslint.org/
https://github.com/vuejs/eslint-plugin-vue
https://stylelint.io/
https://htmlhint.io/
https://github.com/ambv/black
https://prettier.io/
https://vuejs.org/v2/style-guide/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Styling anti-patterns

• Adding unnecessary new rules - whenever possible, delete code to fix issues

• Unscoped styles - if absolutely necessary, use deep selectors to style component children. SCSS supports /
deep/

• Classes referenced in javascript - if absolutely necessary, use ref instead (also an anti-pattern)

• References by ID - use a class instead

• HTML tag selectors - define a class instead

• Floats or flexbox for layout - use KGrid instead

• Media queries - use responsive-window or responsive-element

• Nested selectors - make a sub-component instead (more reading here and here)

• Dynamically-generated class names - avoid patterns which fail the grep test

• Complex pre-processor functionality - use Vue computed styles instead

• Hard-coded values - rely on variables defined in the core theme

• Left or right alignment on user-generated text - use dir="auto" instead for RTL support

2.5.6 Vuex

We use the Vuex library to manage state. Generally Vuex should only store data that needs to persist / be accessed
between views. If this is not necessary, than local component data is a better place to store the data.

To be continued. . .

2.5.7 HTML5 API

In order to effectively and safely host embedded HTML5 apps as a first class content type in Kolibri, we use the
standard IFrame Sandbox functionality and serve HTML5 apps from a separate origin. This allows for HTML5 apps
to run arbitrary Javascript, without concerns about accessing privileged user data, as the separate origin will prevent
leakage of the session authentication into the sandboxed context.

Standard Web APIs

This shared origin does mean that every HTML5 app running in Kolibri is sharing the same origin - for standard Web
APIs like cookies, local storage, and IndexedDB, this poses an issue, as it is possible that multiple HTML5 apps might
overwrite each other’s data.

To handle this eventuality, and to provide an enhanced user experience across multiple devices we shim these APIs in
the context of the sandbox. Cookies and LocalStorage are persisted across the IFrame boundary, meaning that if a user
interacts with an HTML5 app and it sets data to cookies and local storage, then if the user subsequently returns to the
same HTML5 app, the cookies and local storage values from the previous session will be restored and available.

IndexedDB is also shimmed, but due to the very large amount of data that can be stored in IndexedDB, and the fact that
it is often used for the local caching of file based assets (by the Unity framework, for example) this data is transmitted
out of the IFrame sandbox. Instead the databases for IndexedDB are namespaced, in order to prevent clashes between
IndexedDB storage from multiple HTML5 apps - however, this does mean that any data persisted to IndexedDB will
only be preserved within the same browser only.

2.5. Frontend architecture 41

https://vue-loader.vuejs.org/guide/scoped-css.html#deep-selectors
https://vuejs.org/v2/api/#ref
https://csswizardry.com/2012/05/keep-your-css-selectors-short/
http://thesassway.com/beginner/the-inception-rule
http://jamie-wong.com/2013/07/12/grep-test/
https://vuejs.org/v2/guide/class-and-style.html
https://vuex.vuejs.org/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

SCORM

A large number of educational web content relies on the SCORM API to log data about learner interactions. In order
to support this, Kolibri embeds a SCORM namespace on window.parent within the HTML5 app context. This is the
standard place for SCORM API to be located, so any existing content that is SCORM compatible can be used without
modification in this context. Currently, only SCORM 1.2 is supported by this interface, and there are no plans as yet
to support the sequencing standard introduced by SCORM 2004. More information about SCORM 1.2 and the API it
exposes is available at the SCORM website.

xAPI

A more general purpose, but not as widely used, standard for logging interactions about learning content is xAPI.
In order to provide preliminary support for this standard, Kolibri exposes a window.xAPI object in the HTML5 app
context. This API offers a set of methods that allow for using xAPI equivalent actions via a Promise based API. The
methods available are loosely based on the XAPIWrapper Javascript library API, but limits its support to sending and
querying statements, state, activity profiles, and agents. At the moment, the primary use case for this API is internal,
it is used to log data from H5P content interactions.

Custom Navigation

The purpose of the kolibri.js extension of our HTML5 API is to allow a sandboxed HTML5 app to safely request
the main Kolibri application’s data.

External/partner product teams can create HTML5 applications that are fully embeddable within Kolibri and can read
Kolibri content data, which they otherwise wouldn’t be able to access. This opens up possibilities for creative ways
in which learners can engage with content, because partners can create any type of app they want. The app could be
something completely new, developed for a content source that we are adding to the platform, or it could be a branded,
offline recreation of a partner’s existing learning app that previously would not have been able to exist on Kolibri.

When a user has permissions to access a custom channel, and they click on it in the main learn tab, rather than
viewing normal Kolibri, they will experience a full-screen HTML5 app. One out-of-the-box user interaction is the
navigateTo() function, which opens a modal that displays a content node. For other data fetching requests, the app,
not Kolibri, has the responsibilty of determining what to do with that data.

Basic API

Access the API from within an HTML5 app by using window.kolibri.[function]

Functions:

/**
* Type definition for Language metadata
* @typedef {Object} Language
* @property {string} id - an IETF language tag
* @property {string} lang_code - the ISO 639-1 language code
* @property {string} lang_subcode - the regional identifier
* @property {string} lang_name - the name of the language in that language
* @property {('ltr'|'rtl'|)} lang_direction - Direction of the language's script,
* top to bottom is not supported currently
*/

/**
(continues on next page)

42 Chapter 2. Table of contents

https://scorm.com/scorm-explained/technical-scorm/run-time/run-time-reference/#section-2
https://scorm.com/scorm-explained/technical-scorm/run-time/run-time-reference/#section-2
https://github.com/adlnet/xAPIWrapper

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

* Type definition for ContentNode metadata
* @typedef {Object} ContentNode
* @property {string} id - unique id of the ContentNode
* @property {string} channel_id - unique channel_id of the channel that the ContentNode␣
→˓is in
* @property {string} content_id - identifier that is common across all instances of this␣
→˓resource
* @property {string} title - A title that summarizes this ContentNode for the user
* @property {string} description - detailed description of the ContentNode
* @property {string} author - author of the ContentNode
* @property {string} thumbnail_url - URL for the thumbnail for this ContentNode,
* this may be any valid URL format including base64 encoded or blob URL
* @property {boolean} available - Whether the ContentNode has all necessary files for␣
→˓rendering
* @property {boolean} coach_content - Whether the ContentNode is intended only for coach␣
→˓users
* @property {Language} lang - The primary language of the ContentNode
* @property {string} license_description - The description of the license, which may be␣
→˓localized
* @property {string} license_name - The human readable name of the license, localized
* @property {string} license_owner - The name of the person or organization that holds␣
→˓copyright
* @property {number} num_coach_contents - Number of coach contents that are descendants␣
→˓of this
* @property {string} parent - The unique id of the parent of this ContentNode
* @property {number} sort_order - The order of display for this node in its channel
* if depth recursion was not deep enough
*/

/**
* Type definition for PageResults array
* @property {ContentNode[]} results - the array of ContentNodes for this page
* This will be updated to a Pagination Object once pagination is implemented
*/

/**
* Type definition for Theme options
* properties TBD
* @typedef {Object} Theme
*/

/**
* Type definition for NavigationContext
* This can have arbitrary properties as defined
* by the navigating app that it uses to resume its state
* Should be able to be encoded down to <1600 characters using
* an encoding function something like 'encode context' above
* @typedef {Object} NavigationContext
* @property {string} node_id - The current node_id that is being displayed,
* custom apps should handle this as it may be used to
* generate links externally to jump to this state
*/

(continues on next page)

2.5. Frontend architecture 43

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

/*
* Method to query contentnodes from Kolibri and return
* an array of matching metadata
* @param {Object} options - The different options to filter by
* @param {string} [options.parent] - id of the parent node to filter by, or 'self'
* @param {string} [options.ids] - an array of ids to filter by
* @return {Promise<PageResult>} - a Promise that resolves to an array of ContentNodes
*/
getContentByFilter(options)

/*
* Method to query a single contentnode from Kolibri and return
* a metadata object
* @param {string} id - id of the ContentNode
* @return {Promise<ContentNode>} - a Promise that resolves to a ContentNode
*/
getContentById(id)

/*
* Method to search for contentnodes on Kolibri and return
* an array of matching metadata
* @param {Object} options - The different options to search by
* @param {string} [options.keyword] - search term for key word search
* @param {string} [options.under] - id of topic to search under, or 'self'
* @return {Promise<PageResult>} - a Promise that resolves to an array of ContentNodes
*/
searchContent(options)

/*
* Method to set a default theme for any content rendering initiated by this app
* @param {Theme} options - The different options for custom themeing
* @param {string} [options.appBarColor] - Color for app bar atop the renderer
* @param {string} [options.textColor] - Color for the text or icon
* @param {string} [options.backdropColor] - Color for modal backdrop
* @param {string} [options.backgroundColor] - Color for modal background
* @return {Promise} - a Promise that resolves when the theme has been applied
*/
themeRenderer(options)

/*
* Method to allow navigation to or rendering of a specific node
* has optional parameter context that can update the URL for a custom context.
* When this is called for a resource node in the custom navigation context
* this will launch a renderer overlay to maintain the current state, and update the
* query parameters for the URL of the custom context to indicate the change
* If called for a topic in a custom context or outside of a custom context
* this will simply prompt navigation to that node in Kolibri.
* @param {string} nodeId - id of the parent node to navigate to
* @param {NavigationContext=} context - optional context describing the state update
* if node_id is missing from the context, it will be automatically filled in by this␣
→˓method

(continues on next page)

44 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

* @return {Promise} - a Promise that resolves when the navigation has completed
*/
navigateTo(nodeId, context)

/*
* Method to allow updating of stored state in the URL
* @param {NavigationContext} context - context describing the state update
* @return {Promise} - a Promise that resolves when the context has been updated
*/
updateContext(context)

/*
* Method to request the current context state
* @return {Promise<NavigationContext>} - a Promise that resolves
* when the context has been updated
*/
getContext()

/*
* Method to return the current version of Kolibri and hence the API available.
* @return {Promise<string>} - A version string
*/
getVersion()

2.5.8 Adding dependencies

Dependencies are tracked using yarn - see the docs here.

We distinguish development dependencies from runtime dependencies, and these should be installed as such using yarn
add --dev [dep] or yarn add [dep], respectively. Your new dependency should now be recorded in package.json,
and all of its dependencies should be recorded in yarn.lock.

Individual plugins can also have their own package.json and yarn.lock for their own dependencies. Running yarn
install will also install all the dependencies for each activated plugin (inside a node_modules folder inside the plugin
itself). These dependencies will only be available to that plugin at build time. Dependencies for individual plugins
should be added from within the root directory of that particular plugin.

To assist in tracking the source of bloat in our codebase, the command yarn run bundle-stats is available to give
a full readout of the size that uglified packages take up in the final Javascript code.

In addition, a plugin can have its own webpack config, specified inside the buildConfig.js file for plugin spe-
cific webpack configuration (loaders, plugins, etc.). These options will be merged with the base options using
webpack-merge.

2.5. Frontend architecture 45

https://yarnpkg.com/en/docs/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.5.9 Unit testing

Unit testing is carried out using Jest. All JavaScript code should have unit tests for all object methods and functions.

Tests are written in JavaScript, and placed in the ‘assets/test’ folder. An example test is shown below:

var assert = require('assert');

var SearchModel = require('../src/search/search_model.js');

describe('SearchModel', function() {
describe('default result', function() {
it('should be empty an empty array', function () {
var test_model = new SearchModel();
assert.deepEqual(test_model.get("result"), []);

});
});

});

Vue.js components can also be tested. The management plugin contains an example
(kolibri/plugins/management/assets/test/management.js) where the component is bound to a temporary DOM
node, changes are made to the state, and assertions are made about the new component structure.

2.5.10 Frontend build pipeline

Asset pipelining is done using Webpack - this allows the use of require to import modules - as such all written code
should be highly modular, individual files should be responsible for exporting a single function or object.

There are two distinct entities that control this behaviour - a Kolibri Hook on the Python side, which manages the
registration of the frontend code within Django and a buildConfig.js file for the webpack configuration. The format
of the buildConfig.js is relatively straight forward, and the Kolibri Hook and the buildConfig.js are connected
by a single shared bundle_id specified in both:

@register_hook
class LearnNavItem(NavigationHook):

bundle_id = "side_nav"

@register_hook
class LearnAsset(webpack_hooks.WebpackBundleHook):

bundle_id = "app"

module.exports = [
{
bundle_id: 'app',
webpack_config: {
entry: './assets/src/app.js',

},
},
{
bundle_id: 'side_nav',
webpack_config: {
entry: './assets/src/views/LearnSideNavEntry.vue',

(continues on next page)

46 Chapter 2. Table of contents

https://facebook.github.io/jest/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

},
},

];

The two specifications are connected by the shared specification of the bundle_id. Minimally an entry value for the
webpack_config object is required, but any other valid webpack configuration options may be passed as part of the
object - they will be merged with the default Kolibri webpack build.

Kolibri has a system for synchronously and asynchronously loading these bundled JavaScript modules which is medi-
ated by a small core JavaScript app, kolibriCoreAppGlobal. Kolibri Modules define to which events they subscribe,
and asynchronously registered Kolibri Modules are loaded by kolibriCoreAppGlobal only when those events are
triggered. For example if the Video Viewer’s Kolibri Module subscribes to the content_loaded:video event, then when
that event is triggered on kolibriCoreAppGlobal it will asynchronously load the Video Viewer module and re-trigger
the content_loaded:video event on the object the module returns.

Synchronous and asynchronous loading is defined by the template tag used to import the JavaScript for the Kolibri
Module into the Django template. Synchronous loading merely inserts the JavaScript and CSS for the Kolibri Module
directly into the Django template, meaning it is executed at page load.

This can be achieved in two ways using template tags.

The first way is simply by using the webpack_asset template tag defined in
kolibri/core/webpack/templatetags/webpack_tags.py.

The second way is if a Kolibri Module needs to load in the template defined by another plugin or a core part of Kolibri,
a template tag and hook can be defined to register that Kolibri Module’s assets to be loaded on that page. An example
of this is found in the base.html template using the frontend_base_assets tag, the hook that the template tag uses
is defined in kolibri/core/hooks.py.

Asynchronous loading can also, analogously, be done in two ways. Asynchronous loading registers a Kolibri Module
against kolibriCoreAppGlobal on the frontend at page load, but does not load, or execute any of the code until the
events that the Kolibri Module specifies are triggered. When these are triggered, the kolibriCoreAppGlobal will
load the Kolibri Module and pass on any callbacks once it has initialized. Asynchronous loading can be done either
explicitly with a template tag that directly imports a single Kolibri Module using webpack_base_async_assets.

For some parts of the build system, we pre-build assets and commit them to the repository, when we essentially ven-
doring a built version of an external library. We do this for both the Khan Academy Perseus renderer, which we build
a version of and commit to the repository, and the H5P Javascript files. Both have their own build processes that
configured within the yarn workspaces for each.

The Perseus build currently draws from the Learning Equality fork of the Perseus repository here we have made specific
updates to Perseus, as it is no longer open sourced by Khan Academy. We have also made some edits and updates that
make our build process easier and more streamlined. To run the build process to rebuild perseus dist bundle from the
head of the default branch of our fork, run yarn workspace kolibri-perseus-viewer run build-perseus.
This will update all the relevant files and leave a diff to commit after it has finished. This should be committed and
submitted as a pull request to update the code.

2.5. Frontend architecture 47

https://github.com/learningequality/perseus

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.6 Backend architecture

2.6.1 Content database module

This is a core module found in kolibri/core/content.

Concepts and Definitions

ContentNode

High-level abstraction for representing different content kinds, such as Topic, Video, Audio, Exercise, and Document,
and can be easily extended to support new content kinds. With multiple ContentNode objects, it supports grouping,
arranging them in tree structure, and symmetric and asymmetric relationship between two ContentNode objects.

File

Model that stores details about a source file such as the language, size, format, and location.

48 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

ContentDB diagram

• PK = Primary Key

• FK = Foreign Key

• M2M = ManyToManyField

2.6. Backend architecture 49

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

ContentTag

This model is used to establish a filtering system for all ContentNode objects.

ChannelMetadata

Model in each content database that stores the database readable names, description and author for each channel.

ChannelMetadataCache

This class stores the channel metadata cached/denormed into the default database.

Implementation details and workflows

To achieve using separate databases for each channel and be able to switch channels dynamically, the following data
structure and utility functions have been implemented.

ContentDBRoutingMiddleware

This middleware will be applied to every request, and will dynamically select a database based on the channel_id. If a
channel ID was included in the URL, it will ensure the appropriate content DB is used for the duration of the request.
(Note: set_active_content_database is thread-local, so this shouldn’t interfere with other parallel requests.)

For example, this is how the client side dynamically requests data from a specific channel:

>>> localhost:8000/api/content/<channel_1_id>/contentnode

this will respond with all the contentnode data stored in database <channel_1_id>.sqlite3

>>> localhost:8000/api/content/<channel_2_id>/contentnode

this will respond with all the contentnode data stored in database <channel_2_id>.sqlite3

get_active_content_database

A utility function to retrieve the temporary thread-local variable that using_content_database sets

set_active_content_database

A utility function to set the temporary thread-local variable

50 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

using_content_database

A decorator and context manager to do queries on a specific content DB.

Usage as a context manager:

from models import ContentNode

with using_content_database("nalanda"):
objects = ContentNode.objects.all()
return objects.count()

Usage as a decorator:

from models import ContentNode

@using_content_database('nalanda')
def delete_all_the_nalanda_content():

ContentNode.objects.all().delete()

ContentDBRouter

A router that decides what content database to read from based on a thread-local variable.

ContentNode

ContentNode is implemented as a Django model that inherits from two abstract classes, MPTTModel and Content-
DatabaseModel.

• django-mptt’s MPTTModel allows for efficient traversal and querying of the ContentNode tree.

• ContentDatabaseModel is used as a marker so that the content_db_router knows to query against the content
database only if the model inherits from ContentDatabaseModel.

The tree structure is established by the parent field that is a foreign key pointing to another ContentNode object. You
can also create a symmetric relationship using the related field, or an asymmetric field using the is_prerequisite
field.

File

The File model also inherits from ContentDatabaseModel.

To find where the source file is located, the class method get_url uses the checksum field and settings.
CONTENT_STORAGE_DIR to calculate the file path. Every source file is named based on its MD5 hash value (this value
is also stored in the checksum field) and stored in a namespaced folder under the directory specified in settings.
CONTENT_STORAGE_DIR. Because it’s likely to have thousands of content files, and some filesystems cannot handle a
flat folder with a large number of files very well, we create namespaced subfolders to improve the performance. So the
eventual file path would look something like:

[CONTENT_STORAGE_DIR]/content/storage/9/8/9808fa7c560b9801acccf0f6cf74c3ea.mp4

2.6. Backend architecture 51

https://django-mptt.readthedocs.io/en/latest/overview.html

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Content constants

A Python module that stores constants for the kind field in ContentNode model and the preset field and extension
field in File model.

Workflows

There are two workflows that handle content navigation and content rendering:

• Content navigation

1. Start with a ContentNode object.

2. Get the associated File object that has the thumbnail field being True.

3. Get the thumbnail image by calling this File’s get_url method.

4. Determine the template using the kind field of this ContentNode object.

5. Renders the template with the thumbnail image.

• Content rendering

1. Start with a ContentNode object.

2. Retrieve a queryset of associated File objects that are filtered by the preset.

3. Use the thumbnail field as a filter on this queryset to get the File object and call this File object’s get_url
method to get the source file (the thumbnail image)

4. Use the supplementary field as a filter on this queryset to get the “supplementary” File objects, such as
caption (subtitle), and call these File objects’ get_url method to get the source files.

5. Use the supplementary field as a filter on this queryset to get the essential File object. Call its get_url
method to get the source file and use its extension field to choose the content player.

6. Play the content.

API methods

class kolibri.core.content.api.BaseContentNodeMixin

A base mixin for viewsets that need to return the same format of data serialization for ContentNodes. Also used
for public ContentNode endpoints!

class kolibri.core.content.api.BaseContentNodeTreeViewset(*args, **kwargs)

retrieve(request, pk=None)
A nested, paginated representation of the children and grandchildren of a specific node

GET parameters on request can be: depth - a value of either 1 or 2 indicating the depth to recurse the tree,
either 1 or 2 levels if this parameter is missing it will default to 2. next__gt - a value to return child nodes
with a lft value greater than this, if missing defaults to None

The pagination object returned for “children” will have this form: results - a list of serialized children, that
can also have their own nested children attribute. more - a dictionary or None, if a dictionary, will have
an id key that is the id of the parent object for these children, and a params key that is a dictionary of the
required query parameters to query more children for this parent - at a minimum this will include next__gt
and depth, but may also include other query parameters for filtering content nodes.

52 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

The “more” property describes the “id” required to do URL reversal on this endpoint, and the params that
should be passed as query parameters to get the next set of results for pagination.

Parameters

• request – request object

• pk – id parent node

Returns
an object representing the parent with a pagination object as “children”

class kolibri.core.content.api.ChannelMetadataViewSet(*args, **kwargs)

dispatch(request, *args, **kwargs)
.dispatch() is pretty much the same as Django’s regular dispatch, but with extra hooks for startup, finalize,
and exception handling.

class kolibri.core.content.api.CharInFilter(*args, **kwargs)

class kolibri.core.content.api.ContentNodeBookmarksViewset(*args, **kwargs)

get_queryset()

Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets eval-
uated only once, and those results are cached for all subsequent requests.

You may want to override this if you need to provide different querysets depending on the incoming request.

(Eg. return a list of items that is specific to the user)

pagination_class

alias of ValuesViewsetLimitOffsetPagination

class kolibri.core.content.api.ContentNodeGranularViewset(**kwargs)

get_queryset()

Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets eval-
uated only once, and those results are cached for all subsequent requests.

You may want to override this if you need to provide different querysets depending on the incoming request.

(Eg. return a list of items that is specific to the user)

get_serializer_context()

Extra context provided to the serializer class.

serializer_class

alias of ContentNodeGranularSerializer

class kolibri.core.content.api.ContentNodeProgressViewset(**kwargs)

get_queryset()

Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets eval-
uated only once, and those results are cached for all subsequent requests.

2.6. Backend architecture 53

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

You may want to override this if you need to provide different querysets depending on the incoming request.

(Eg. return a list of items that is specific to the user)

pagination_class

alias of OptionalPagination

class kolibri.core.content.api.ContentNodeSearchViewset(*args, **kwargs)

initial(request, *args, **kwargs)
Runs anything that needs to occur prior to calling the method handler.

search(value, max_results, filter=True)
Implement various filtering strategies in order to get a wide range of search results. When filter is used, this
object must have a request attribute having a ‘query_params’ QueryDict containing the filters to be applied

class kolibri.core.content.api.ContentNodeTreeViewset(*args, **kwargs)

dispatch(request, *args, **kwargs)
.dispatch() is pretty much the same as Django’s regular dispatch, but with extra hooks for startup, finalize,
and exception handling.

retrieve(request, pk=None)
A nested, paginated representation of the children and grandchildren of a specific node

GET parameters on request can be: depth - a value of either 1 or 2 indicating the depth to recurse the tree,
either 1 or 2 levels if this parameter is missing it will default to 2. next__gt - a value to return child nodes
with a lft value greater than this, if missing defaults to None

The pagination object returned for “children” will have this form: results - a list of serialized children, that
can also have their own nested children attribute. more - a dictionary or None, if a dictionary, will have
an id key that is the id of the parent object for these children, and a params key that is a dictionary of the
required query parameters to query more children for this parent - at a minimum this will include next__gt
and depth, but may also include other query parameters for filtering content nodes.

The “more” property describes the “id” required to do URL reversal on this endpoint, and the params that
should be passed as query parameters to get the next set of results for pagination.

Parameters

• request – request object

• pk – id parent node

Returns
an object representing the parent with a pagination object as “children”

class kolibri.core.content.api.ContentNodeViewset(*args, **kwargs)

descendants(request)
Returns a slim view all the descendants of a set of content nodes (as designated by the passed in ids). In
addition to id, title, kind, and content_id, each node is also annotated with the ancestor_id of one of the ids
that are passed into the request. In the case where a node has more than one ancestor in the set of content
nodes requested, duplicates of that content node are returned, each annotated with one of the ancestor_ids
for a node.

dispatch(request, *args, **kwargs)
.dispatch() is pretty much the same as Django’s regular dispatch, but with extra hooks for startup, finalize,
and exception handling.

54 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

pagination_class

alias of OptionalContentNodePagination

recommendations_for(request, **kwargs)
Recommend items that are similar to this piece of content.

class kolibri.core.content.api.ContentRequestViewset(*args, **kwargs)

get_queryset()

Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets eval-
uated only once, and those results are cached for all subsequent requests.

You may want to override this if you need to provide different querysets depending on the incoming request.

(Eg. return a list of items that is specific to the user)

pagination_class

alias of OptionalPageNumberPagination

serializer_class

alias of ContentDownloadRequestSerializer

class kolibri.core.content.api.FileViewset(**kwargs)

get_queryset()

Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets eval-
uated only once, and those results are cached for all subsequent requests.

You may want to override this if you need to provide different querysets depending on the incoming request.

(Eg. return a list of items that is specific to the user)

pagination_class

alias of OptionalPageNumberPagination

serializer_class

alias of FileSerializer

class kolibri.core.content.api.InternalContentNodeMixin

A mixin for all content node viewsets for internal use, whereas BaseContentNodeMixin is reused for public API
endpoints also.

class kolibri.core.content.api.OptionalContentNodePagination

class kolibri.core.content.api.OptionalPageNumberPagination

Pagination class that allows for page number-style pagination, when requested. To activate, the page_size argu-
ment must be set. For example, to request the first 20 records: ?page_size=20&page=1

class kolibri.core.content.api.OptionalPagination

class kolibri.core.content.api.RemoteChannelViewSet(**kwargs)

2.6. Backend architecture 55

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

dispatch(request, *args, **kwargs)
.dispatch() is pretty much the same as Django’s regular dispatch, but with extra hooks for startup, finalize,
and exception handling.

list(request, *args, **kwargs)
Gets metadata about all public channels on kolibri studio.

retrieve(request, pk=None)
Gets metadata about a channel through a token or channel id.

class kolibri.core.content.api.RemoteViewSet(*args, **kwargs)

class kolibri.core.content.api.UUIDInFilter(*args, **kwargs)

class kolibri.core.content.api.UserContentNodeViewset(*args, **kwargs)
A content node viewset for filtering on user specific fields.

get_queryset()

Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets eval-
uated only once, and those results are cached for all subsequent requests.

You may want to override this if you need to provide different querysets depending on the incoming request.

(Eg. return a list of items that is specific to the user)

pagination_class

alias of OptionalPagination

kolibri.core.content.api.metadata_cache(view_func, cache_key_func=<function get_cache_key>)
Decorator to apply an Etag sensitive page cache

kolibri.core.content.api.no_cache_on_method(view_func)
Decorator to disable caching for a particular method

API endpoints

request specific content:

>>> localhost:8000/api/content/<channel_id>/contentnode/<content_id>

search content:

>>> localhost:8000/api/content/<channel_id>/contentnode/?search=<search words>

request specific content with specified fields:

>>> localhost:8000/api/content/<channel_id>/contentnode/<content_id>/?fields=pk,title,
→˓kind

request paginated contents

>>> localhost:8000/api/content/<channel_id>/contentnode/?page=6&page_size=10

request combines different usages

56 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

>>> localhost:8000/api/content/<channel_id>/contentnode/?fields=pk,title,kind,instance_
→˓id,description,files&page=6&page_size=10&search=wh

2.6.2 Users, auth, and permissions module

This is a core module found in kolibri/core/auth.

Models

We have four main abstractions: Users, Collections, Memberships, and Roles.

Users represent people, like students in a school, teachers for a classroom, or volunteers setting up informal installations.
A FacilityUser belongs to a particular facility, and has permissions only with respect to other data that is associated
with that facility. FacilityUser accounts (like other facility data) may be synced across multiple devices.

Collections form a hierarchy, with Collections able to belong to other Collections. Collections are subdivided into
several pre-defined levels (Facility > Classroom > LearnerGroup).

A FacilityUser (but not a DeviceOwner) can be marked as a member of a Collection through a Membership
object. Being a member of a Collection also means being a member of all the Collections above that Collection in the
hierarchy.

Another way in which a FacilityUser can be associated with a particular Collection is through a Role object,
which grants the user a role with respect to the Collection and all the collections below it. A Role object also stores
the “kind” of the role (currently, one of “admin” or “coach”), which affects what permissions the user gains through
the Role.

class kolibri.core.auth.models.AbstractFacilityDataModel(*args, **kwargs)
Base model for Kolibri “Facility Data”, which is data that is specific to a particular Facility, such as
FacilityUsers, Collections, and other data associated with those users and collections.

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

cached_related_dataset_lookup(related_obj_name)
Attempt to get the dataset_id either from the cache or the actual related obj instance.

Parameters
related_obj_name – string representing the name of the related object on this model

Returns
the dataset_id associated with the related obj

calculate_source_id()

Should return a string that uniquely defines the model instance or None for a random uuid.

clean_fields(*args, **kwargs)
Cleans all fields and raises a ValidationError containing a dict of all validation errors if any occur.

2.6. Backend architecture 57

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

ensure_dataset(*args, **kwargs)
If no dataset has yet been specified, try to infer it. If a dataset has already been specified, to prevent
inconsistencies, make sure it matches the inferred dataset, otherwise raise a KolibriValidationError.
If we have no dataset and it can’t be inferred, we raise a KolibriValidationError exception as well.

full_clean(*args, **kwargs)
Calls clean_fields, clean, and validate_unique, on the model, and raises a ValidationError for any errors
that occurred.

infer_dataset(*args, **kwargs)
This method is used by ensure_dataset to “infer” which dataset should be associated with this instance.
It should be overridden in any subclass of AbstractFacilityDataModel, to define a model-specific
inference.

save(*args, **kwargs)
Saves the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

class kolibri.core.auth.models.AdHocGroup(*args, **kwargs)
An AdHocGroup is a collection kind that can be used in an assignment to create a group that is specific to a single
Lesson or Exam.

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• name (CharField) – Name

• parent_id (ForeignKey to ~) – Parent

• kind (CharField) – Kind

exception DoesNotExist

exception MultipleObjectsReturned

classmethod deserialize(dict_model)
Returns an unsaved class object based on the valid properties passed in.

get_classroom()

Gets the AdHocGroup’s parent Classroom.

Returns
A Classroom instance.

save(*args, **kwargs)
Saves the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

58 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

class kolibri.core.auth.models.Classroom(id, _morango_dirty_bit, _morango_source_id,
_morango_partition, dataset, name, parent, kind)

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• name (CharField) – Name

• parent_id (ForeignKey to ~) – Parent

• kind (CharField) – Kind

exception DoesNotExist

exception MultipleObjectsReturned

get_facility()

Gets the Classroom’s parent Facility.

Returns
A Facility instance.

get_individual_learners_group()

Returns a QuerySet of AdHocGroups.

:return A AdHocGroup QuerySet.

get_learner_groups()

Returns a QuerySet of LearnerGroups associated with this Classroom.

Returns
A LearnerGroup QuerySet.

save(*args, **kwargs)
Saves the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

class kolibri.core.auth.models.Collection(*args, **kwargs)
Collections are hierarchical groups of FacilityUsers, used for grouping users and making decisions about
permissions. FacilityUsers can have roles for one or more Collections, by way of obtaining Roles asso-
ciated with those Collections. Collections can belong to other Collections, and user membership in a
Collection is conferred through Memberships. Collections are subdivided into several pre-defined levels.

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

2.6. Backend architecture 59

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• name (CharField) – Name

• parent_id (ForeignKey to ~) – Parent

• kind (CharField) – Kind

exception DoesNotExist

exception MultipleObjectsReturned

add_member(user)
Create a Membership associating the provided user with this Collection. If the Membership object
already exists, just return that, without changing anything.

Parameters
user – The FacilityUser to add to this Collection.

Returns
The Membership object (possibly new) that associates the user with the Collection.

add_role(user, role_kind)
Create a Role associating the provided user with this collection, with the specified kind of role. If the Role
object already exists, just return that, without changing anything.

Parameters

• user – The FacilityUser to associate with this Collection.

• role_kind – The kind of role to give the user with respect to this Collection.

Returns
The Role object (possibly new) that associates the user with the Collection.

calculate_partition()

Should return a string specifying this model instance’s partition, using self.ID_PLACEHOLDER in place
of its own ID, if needed.

clean_fields(*args, **kwargs)
Cleans all fields and raises a ValidationError containing a dict of all validation errors if any occur.

get_admins()

Returns users who have the admin role for this immediate collection.

get_coaches()

Returns users who have the coach role for this immediate collection.

infer_dataset(*args, **kwargs)
This method is used by ensure_dataset to “infer” which dataset should be associated with this instance.
It should be overridden in any subclass of AbstractFacilityDataModel, to define a model-specific
inference.

remove_member(user)
Remove any Membership objects associating the provided user with this Collection.

Parameters
user – The FacilityUser to remove from this Collection.

Returns
True if a Membershipwas removed, False if there was no matching Membership to remove.

60 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

remove_role(user, role_kind)
Remove any Role objects associating the provided user with this Collection, with the specified kind of
role.

Parameters

• user – The FacilityUser to dissociate from this Collection (for the specific role kind).

• role_kind – The kind of role to remove from the user with respect to this Collection.

save(*args, **kwargs)
Saves the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

class kolibri.core.auth.models.DatasetCache

class kolibri.core.auth.models.Facility(id, _morango_dirty_bit, _morango_source_id,
_morango_partition, dataset, name, parent, kind)

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• name (CharField) – Name

• parent_id (ForeignKey to ~) – Parent

• kind (CharField) – Kind

exception DoesNotExist

exception MultipleObjectsReturned

ensure_dataset(*args, **kwargs)
If no dataset has yet been specified, try to infer it. If a dataset has already been specified, to prevent
inconsistencies, make sure it matches the inferred dataset, otherwise raise a KolibriValidationError.
If we have no dataset and it can’t be inferred, we raise a KolibriValidationError exception as well.

get_classrooms()

Returns a QuerySet of Classrooms under this Facility.

Returns
A Classroom QuerySet.

infer_dataset(*args, **kwargs)
This method is used by ensure_dataset to “infer” which dataset should be associated with this instance.
It should be overridden in any subclass of AbstractFacilityDataModel, to define a model-specific
inference.

save(*args, **kwargs)
Saves the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

2.6. Backend architecture 61

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

class kolibri.core.auth.models.FacilityDataSyncableModel(*args, **kwargs)

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

class kolibri.core.auth.models.FacilityDataset(*args, **kwargs)
FacilityDataset stores high-level metadata and settings for a particular Facility. It is also the model
that all models storing facility data (data that is associated with a particular facility, and that inherits from
AbstractFacilityDataModel) foreign key onto, to indicate that they belong to this particular Facility.

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• description (TextField) – Description

• location (CharField) – Location

• preset (CharField) – Preset

• learner_can_edit_username (BooleanField) – Learner can edit username

• learner_can_edit_name (BooleanField) – Learner can edit name

• learner_can_edit_password (BooleanField) – Learner can edit password

• learner_can_sign_up (BooleanField) – Learner can sign up

• learner_can_delete_account (BooleanField) – Learner can delete account

• learner_can_login_with_no_password (BooleanField) – Learner can login with no
password

• show_download_button_in_learn (BooleanField) – Show download button in learn

• extra_fields (JSONField) – Extra fields

• registered (BooleanField) – Registered

exception DoesNotExist

exception MultipleObjectsReturned

calculate_partition()

Should return a string specifying this model instance’s partition, using self.ID_PLACEHOLDER in place
of its own ID, if needed.

calculate_source_id()

Should return a string that uniquely defines the model instance or None for a random uuid.

full_facility_import

Returns True if this user is a member of a facility that has been fully imported.

62 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

save(*args, **kwargs)
Saves the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

class kolibri.core.auth.models.FacilityUser(*args, **kwargs)
FacilityUser is the fundamental object of the auth app. These users represent the main users, and can be asso-
ciated with a hierarchy of Collections through Memberships and Roles, which then serve to help determine
permissions.

Parameters

• password (CharField) – Password

• last_login (DateTimeField) – Last login

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• username (CharField) – Required. 254 characters or fewer.

• full_name (CharField) – Full name

• date_joined (DateTimeTzField) – Date joined

• facility_id (ForeignKey to ~) – Facility

• gender (CharField) – Gender

• birth_year (CharField) – Birth year

• id_number (CharField) – Id number

exception DoesNotExist

exception MultipleObjectsReturned

calculate_partition()

Should return a string specifying this model instance’s partition, using self.ID_PLACEHOLDER in place
of its own ID, if needed.

can_create_instance(obj)
Checks whether this user (self) has permission to create a particular model instance (obj).

This method should be overridden by classes that inherit from KolibriAbstractBaseUser.

In general, unless an instance has already been initialized, this method should not be called directly; instead,
it should be preferred to call can_create.

Parameters
obj – An (unsaved) instance of a Django model, to check permissions for.

Returns
True if this user should have permission to create the object, otherwise False.

Return type
bool

2.6. Backend architecture 63

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

can_delete(obj)
Checks whether this user (self) has permission to delete a particular model instance (obj).

This method should be overridden by classes that inherit from KolibriAbstractBaseUser.

Parameters
obj – An instance of a Django model, to check permissions for.

Returns
True if this user should have permission to delete the object, otherwise False.

Return type
bool

property can_manage_content

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two
instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

can_read(obj)
Checks whether this user (self) has permission to read a particular model instance (obj).

This method should be overridden by classes that inherit from KolibriAbstractBaseUser.

Parameters
obj – An instance of a Django model, to check permissions for.

Returns
True if this user should have permission to read the object, otherwise False.

Return type
bool

can_update(obj)
Checks whether this user (self) has permission to update a particular model instance (obj).

This method should be overridden by classes that inherit from KolibriAbstractBaseUser.

Parameters
obj – An instance of a Django model, to check permissions for.

Returns
True if this user should have permission to update the object, otherwise False.

Return type
bool

classmethod deserialize(dict_model)
Returns an unsaved class object based on the valid properties passed in.

filter_readable(queryset)
Filters a queryset down to only the elements that this user should have permission to read.

Parameters
queryset – A QuerySet instance that the filtering should be applied to.

Returns
Filtered QuerySet including only elements that are readable by this user.

full_facility_import

Returns True if this user is a member of a facility that has been fully imported.

64 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

has_role_for_collection(kinds, coll)
Determine whether this user has (at least one of) the specified role kind(s) in relation to the specified
Collection.

Parameters

• kinds (string from kolibri.core.auth.constants.role_kinds.*) – The kind
(or kinds) of role to check for, as a string or iterable.

• coll – The target Collection for which this user has the roles.

Returns
True if this user has the specified role kind with respect to the target Collection, otherwise
False.

Return type
bool

has_role_for_user(kinds, user)
Determine whether this user has (at least one of) the specified role kind(s) in relation to the specified user.

Parameters

• user – The user that is the target of the role (for which this user has the roles).

• kinds (string from kolibri.core.auth.constants.role_kinds.*) – The kind (or
kinds) of role to check for, as a string or iterable.

Returns
True if this user has the specified role kind with respect to the target user, otherwise False.

Return type
bool

infer_dataset(*args, **kwargs)
This method is used by ensure_dataset to “infer” which dataset should be associated with this instance.
It should be overridden in any subclass of AbstractFacilityDataModel, to define a model-specific
inference.

is_member_of(coll)
Determine whether this user is a member of the specified Collection.

Parameters
coll – The Collection for which we are checking this user’s membership.

Returns
True if this user is a member of the specified Collection, otherwise False.

Return type
bool

property is_staff

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two
instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

property is_superuser

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two
instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

2.6. Backend architecture 65

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

property session_data

Data that is added to the session data at login and during session updates.

class kolibri.core.auth.models.KolibriAbstractBaseUser(*args, **kwargs)
Our custom user type, derived from AbstractBaseUser as described in the Django docs. Draws liberally from
django.contrib.auth.AbstractUser, except we exclude some fields we don’t care about, like email.

This model is an abstract model, and is inherited by FacilityUser.

Parameters

• password (CharField) – Password

• last_login (DateTimeField) – Last login

• username (CharField) – Required. 254 characters or fewer.

• full_name (CharField) – Full name

• date_joined (DateTimeTzField) – Date joined

can_create(Model, data)
Checks whether this user (self) has permission to create an instance of Model with the specified attributes
(data).

This method defers to the can_create_instance method, and in most cases should not itself be overrid-
den.

Parameters

• Model – A subclass of django.db.models.Model

• data – A dict of data to be used in creating an instance of the Model

Returns
True if this user should have permission to create an instance of Model with the specified
data, else False.

Return type
bool

can_create_instance(obj)
Checks whether this user (self) has permission to create a particular model instance (obj).

This method should be overridden by classes that inherit from KolibriAbstractBaseUser.

In general, unless an instance has already been initialized, this method should not be called directly; instead,
it should be preferred to call can_create.

Parameters
obj – An (unsaved) instance of a Django model, to check permissions for.

Returns
True if this user should have permission to create the object, otherwise False.

Return type
bool

can_delete(obj)
Checks whether this user (self) has permission to delete a particular model instance (obj).

This method should be overridden by classes that inherit from KolibriAbstractBaseUser.

Parameters
obj – An instance of a Django model, to check permissions for.

66 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Returns
True if this user should have permission to delete the object, otherwise False.

Return type
bool

can_read(obj)
Checks whether this user (self) has permission to read a particular model instance (obj).

This method should be overridden by classes that inherit from KolibriAbstractBaseUser.

Parameters
obj – An instance of a Django model, to check permissions for.

Returns
True if this user should have permission to read the object, otherwise False.

Return type
bool

can_update(obj)
Checks whether this user (self) has permission to update a particular model instance (obj).

This method should be overridden by classes that inherit from KolibriAbstractBaseUser.

Parameters
obj – An instance of a Django model, to check permissions for.

Returns
True if this user should have permission to update the object, otherwise False.

Return type
bool

filter_readable(queryset)
Filters a queryset down to only the elements that this user should have permission to read.

Parameters
queryset – A QuerySet instance that the filtering should be applied to.

Returns
Filtered QuerySet including only elements that are readable by this user.

has_role_for(kinds, obj)
Helper function that defers to has_role_for_user or has_role_for_collection based on the type of
object passed in.

has_role_for_collection(kinds, coll)
Determine whether this user has (at least one of) the specified role kind(s) in relation to the specified
Collection.

Parameters

• kinds (string from kolibri.core.auth.constants.role_kinds.*) – The kind
(or kinds) of role to check for, as a string or iterable.

• coll – The target Collection for which this user has the roles.

Returns
True if this user has the specified role kind with respect to the target Collection, otherwise
False.

2.6. Backend architecture 67

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Return type
bool

has_role_for_user(kinds, user)
Determine whether this user has (at least one of) the specified role kind(s) in relation to the specified user.

Parameters

• user – The user that is the target of the role (for which this user has the roles).

• kinds (string from kolibri.core.auth.constants.role_kinds.*) – The kind (or
kinds) of role to check for, as a string or iterable.

Returns
True if this user has the specified role kind with respect to the target user, otherwise False.

Return type
bool

is_member_of(coll)
Determine whether this user is a member of the specified Collection.

Parameters
coll – The Collection for which we are checking this user’s membership.

Returns
True if this user is a member of the specified Collection, otherwise False.

Return type
bool

property session_data

Data that is added to the session data at login and during session updates.

class kolibri.core.auth.models.KolibriAnonymousUser

Custom anonymous user that also exposes the same interface as KolibriAbstractBaseUser, for consistency.

Parameters

• password (CharField) – Password

• last_login (DateTimeField) – Last login

• full_name (CharField) – Full name

• date_joined (DateTimeTzField) – Date joined

can_create_instance(obj)
Checks whether this user (self) has permission to create a particular model instance (obj).

This method should be overridden by classes that inherit from KolibriAbstractBaseUser.

In general, unless an instance has already been initialized, this method should not be called directly; instead,
it should be preferred to call can_create.

Parameters
obj – An (unsaved) instance of a Django model, to check permissions for.

Returns
True if this user should have permission to create the object, otherwise False.

Return type
bool

68 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

can_delete(obj)
Checks whether this user (self) has permission to delete a particular model instance (obj).

This method should be overridden by classes that inherit from KolibriAbstractBaseUser.

Parameters
obj – An instance of a Django model, to check permissions for.

Returns
True if this user should have permission to delete the object, otherwise False.

Return type
bool

can_read(obj)
Checks whether this user (self) has permission to read a particular model instance (obj).

This method should be overridden by classes that inherit from KolibriAbstractBaseUser.

Parameters
obj – An instance of a Django model, to check permissions for.

Returns
True if this user should have permission to read the object, otherwise False.

Return type
bool

can_update(obj)
Checks whether this user (self) has permission to update a particular model instance (obj).

This method should be overridden by classes that inherit from KolibriAbstractBaseUser.

Parameters
obj – An instance of a Django model, to check permissions for.

Returns
True if this user should have permission to update the object, otherwise False.

Return type
bool

filter_readable(queryset)
Filters a queryset down to only the elements that this user should have permission to read.

Parameters
queryset – A QuerySet instance that the filtering should be applied to.

Returns
Filtered QuerySet including only elements that are readable by this user.

has_role_for_collection(kinds, coll)
Determine whether this user has (at least one of) the specified role kind(s) in relation to the specified
Collection.

Parameters

• kinds (string from kolibri.core.auth.constants.role_kinds.*) – The kind
(or kinds) of role to check for, as a string or iterable.

• coll – The target Collection for which this user has the roles.

2.6. Backend architecture 69

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Returns
True if this user has the specified role kind with respect to the target Collection, otherwise
False.

Return type
bool

has_role_for_user(kinds, user)
Determine whether this user has (at least one of) the specified role kind(s) in relation to the specified user.

Parameters

• user – The user that is the target of the role (for which this user has the roles).

• kinds (string from kolibri.core.auth.constants.role_kinds.*) – The kind (or
kinds) of role to check for, as a string or iterable.

Returns
True if this user has the specified role kind with respect to the target user, otherwise False.

Return type
bool

is_member_of(coll)
Determine whether this user is a member of the specified Collection.

Parameters
coll – The Collection for which we are checking this user’s membership.

Returns
True if this user is a member of the specified Collection, otherwise False.

Return type
bool

property session_data

Data that is added to the session data at login and during session updates.

class kolibri.core.auth.models.LearnerGroup(id, _morango_dirty_bit, _morango_source_id,
_morango_partition, dataset, name, parent, kind)

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• name (CharField) – Name

• parent_id (ForeignKey to ~) – Parent

• kind (CharField) – Kind

exception DoesNotExist

exception MultipleObjectsReturned

70 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

get_classroom()

Gets the LearnerGroup’s parent Classroom.

Returns
A Classroom instance.

save(*args, **kwargs)
Saves the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

class kolibri.core.auth.models.Membership(*args, **kwargs)
A FacilityUser can be marked as a member of a Collection through a Membership object. Being a member
of a Collection also means being a member of all the Collections above that Collection in the tree
(i.e. if you are a member of a LearnerGroup, you are also a member of the Classroom that contains that
LearnerGroup, and of the Facility that contains that Classroom).

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• user_id (ForeignKey to ~) – User

• collection_id (TreeForeignKey to ~) – Collection

exception DoesNotExist

exception MultipleObjectsReturned

calculate_partition()

Should return a string specifying this model instance’s partition, using self.ID_PLACEHOLDER in place
of its own ID, if needed.

calculate_source_id()

Should return a string that uniquely defines the model instance or None for a random uuid.

infer_dataset(*args, **kwargs)
This method is used by ensure_dataset to “infer” which dataset should be associated with this instance.
It should be overridden in any subclass of AbstractFacilityDataModel, to define a model-specific
inference.

save(*args, **kwargs)
Saves the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

class kolibri.core.auth.models.Role(*args, **kwargs)
A FacilityUser can have a role for a particular Collection through a Role object, which also stores the
“kind” of the Role (currently, one of “admin” or “coach”). Having a role for a Collection also implies having
that role for all sub-collections of that Collection (i.e. all the Collections below it in the tree).

Parameters

2.6. Backend architecture 71

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• user_id (ForeignKey to ~) – User

• collection_id (TreeForeignKey to ~) – Collection

• kind (CharField) – Kind

exception DoesNotExist

exception MultipleObjectsReturned

calculate_partition()

Should return a string specifying this model instance’s partition, using self.ID_PLACEHOLDER in place
of its own ID, if needed.

calculate_source_id()

Should return a string that uniquely defines the model instance or None for a random uuid.

infer_dataset(*args, **kwargs)
This method is used by ensure_dataset to “infer” which dataset should be associated with this instance.
It should be overridden in any subclass of AbstractFacilityDataModel, to define a model-specific
inference.

save(*args, **kwargs)
Saves the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

Concepts and Definitions

Facility

All user data (accounts, logs, ratings, etc) in Kolibri are associated with a particular “Facility”. A Facility is a grouping
of users who are physically co-located, and who generally access Kolibri from the same server on a local network, for
example in a school, library, or community center. Collectively, all the data associated with a particular Facility are
referred to as a “Facility Dataset”.

Users

Kolibri’s users are instances of the FacilityUser model, which derives from Django’s AbstractBaseUser. A user
FacilityUser is associated with a particular Facility, and the user’s account and data may be synchronized across
multiple devices. A FacilityUser may be made into a superuser, with permissions to modify any data on her own
device. However, normally a FacilityUser only has permissions for some subset of data from their own Facility
Dataset (as determined in part by the roles they possess; see below).

72 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Collections

Collections are hierarchical groups of users, used for grouping users and making decisions about permissions. Users
can have roles for one or more Collections, by way of obtaining Roles associated with those Collections. Collections
can belong to other Collections, and user membership in a collection is conferred through Membership. Collections
are subdivided into several pre-defined levels: Facility, Classroom, and LearnerGroup, as illustrated here:

In this illustration, Facility X contains two Classrooms, Class A and Class B. Class A contains two LearnerGroups,
Group Q and Group R.

Membership

A FacilityUser can be marked as a member of a Collection through a Membership object. Being a member of
a Collection requires first being a member of all the Collections above that Collection in the hierarchy. Thus, in the
illustration below, Alice is directly associated with Group Q through a Membership object, which makes her a member
of Group Q. As Group Q is contained within Class A, which is contained within Facility X, must also be a member of
both those collections.

Note also that a FacilityUser is always implicitly a member of the Facility with which it is associated, even if it
does not have any Membership objects.

Roles

Another way in which a FacilityUser can be associated with a particular Collection is through a Role object,
which grants the user a role with respect to the Collection and all the collections below it. A Role object stores the
“kind” of the role (currently, one of “admin”, “coach”, or “assignable coach”), which affects what permissions the user
gains through the Role.

To illustrate, consider the example in the following figure:

The figure shows a Role object linking Bob with Class A, and the Role is marked with kind “coach”, which we can
informally read as “Bob is a coach for Class A”. We consider user roles to be “downward-transitive” (meaning if you
have a role for a collection, you also have that role for descendents of that collection). Thus, in our example, we can
say that “Bob is also a coach for Group Q”. Furthermore, as Alice is a member of Class A, we can say that “Bob is a
coach for Alice”.

A user can be assigned certain roles for different collection types:

• Facility collections: admin, coach, or assignable coach roles

• Classroom collections: coach roles

• LearnerGroup and AdHocGroup collections: no roles

2.6. Backend architecture 73

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Role-Based Permissions

As a lot of Facility Data in Kolibri is associated with a particular FacilityUser, for many objects we can concisely
define a requesting user’s permissions in terms of his or her roles for the object’s associated User. For example, if a
ContentLog represents a particular FacilityUser’s interaction with a piece of content, we might decide that another
FacilityUser can view the ContentLog if she is a coach (has the coach role) for the user. In our scenario above,
this would mean that Bob would have read permissions for a ContentLog for which “user=Alice”, by virtue of having
the coach role for Alice.

Some data may not be related to a particular user, but rather with a Collection (e.g. the Collection object itself,
settings for a Collection, or content assignments for a Collection). Permissions for these objects can be defined in
terms of the role the requesting User has with respect to the object’s associated Collection. So, for example, we might
allow Bob to assign content to Class A on the basis of him having the “coach” role for Class A.

Permission Levels

As we are constructing a RESTful API for accessing data within Kolibri, the core actions for which we need to define
permissions are the CRUD operations (Create, Read, Update, Delete). As Create, Update, and Delete permissions often
go hand in hand, we can collectively refer to them as “Write Permissions”.

Implementation details

Collections

A Collection is implemented as a Django model that inherits from django-mptt’s MPTTModel, which allows for effi-
cient traversal and querying of the collection hierarchy. For convenience, the specific types of collections – Facility,
Classroom, and LearnerGroup – are implemented as _proxy models of the main Collection model. There is a
kind field on Collection that allows us to distinguish between these types, and the ModelManager for the proxy
models returns only instances of the matching kind.

From a Collection instance, you can traverse upwards in the tree with the parent field, and downwards via the
children field (which is a reverse RelatedManager for the parent field):

>>> my_classroom.parent
<Collection: "Facility X" (facility)>

>>> my_facility.children.all()
[<Collection: "Class A" (classroom)>, <Collection: "Class B" (classroom)>]

Note that the above methods (which are provided by MPTTModel) return generic Collection instances, rather than
specific proxy model instances. To retrieve parents and children as appropriate proxy models, use the helper methods
provided on the proxy models, e.g.:

>>> my_classroom.get_facility()
<Facility: Facility X>

>>> my_facility.get_classrooms()
[<Classroom: Class A>, <Classroom: Class B>]

74 Chapter 2. Table of contents

https://django-mptt.readthedocs.io/en/latest/index.html

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Facility and FacilityDataset

The Facility model (a proxy model for Collection, as described above) is special in that it has no parent; it
is the root of a tree. A Facility model instance, and all other Facility Data associated with the Facility and its
FacilityUsers, inherits from AbstractFacilityDataModel, which has a dataset field that foreign keys onto
a common FacilityDataset instance. This makes it easy to check, for purposes of permissions or filtering data
for synchronization, which instances are part of a particular Facility Dataset. The dataset field is automatically
set during the save method, by calling the infer_dataset method, which must be overridden in every subclass of
AbstractFacilityDataModel to return the dataset to associate with that instance.

Efficient hierarchy calculations

In order to make decisions about whether a user has a certain permission for an object, we need an efficient way
to retrieve the set of roles the user has in relation to that object. This involves traversing the Role table, Collection
hierarchy, and possibly the Membership table. Because we require explicit representation of membership at each level
in the hierarchy, we can rely solely on the transitivity of role permissions in order to determine the role that a user has
with respect to some data.

Managing Roles and Memberships

User and Collection models have various helper methods for retrieving and modifying roles and memberships:

• To get all the members of a collection (including those of its descendant collections), use Collection.
get_members().

• To add or remove roles/memberships, use the add_role, remove_role, add_member, and remove_member
methods of Collection (or the additional convenience methods, such as add_admin, that exist on the proxy
models).

• To check whether a user is a member of a Collection, use KolibriAbstractBaseUser.is_member_of

• To check whether a user has a particular kind of role for a collection or another user, use the
has_role_for_collection and has_role_for_user methods of KolibriAbstractBaseUser.

• To list all role kinds a user has for a collection or another user, use the get_roles_for_collection and
get_roles_for_user methods of KolibriAbstractBaseUser.

Encoding Permission Rules

We need to associate a particular set of rules with each model, to specify the permissions that users should have
in relation to instances of that model. While not all models have the same rules, there are some broad categories
of models that do share the same rules (e.g. ContentInteractionLog, ContentSummaryLog, and UserSessionLog –
collectively, “User Log Data”). Hence, it is useful to encapsulate a permissions “class” that can be reused across
models, and extended (through inheritance) if slightly different behavior is needed. These classes of permissions are
defined as Python classes that inherit from kolibri.auth.permissions.base.BasePermissions, which defines the following
overridable methods:

• The following four Boolean (True/False) permission checks, corresponding to the “CRUD” oper-
ations: - user_can_create_object - user_can_read_object - user_can_update_object -
user_can_delete_object

• The queryset-filtering readable_by_user_filtermethod, which takes in a user and returns a Django Q object
that can be used to filter to just objects that should be readable by the user.

2.6. Backend architecture 75

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Associating permissions with models

A model is associated with a particular permissions class through a “permissions” attribute defined on the top level of the
model class, referencing an instance of a Permissions class (a class that subclasses BasePermissions). For example,
to specify that a model ContentSummaryLog should draw its permissions rules from the UserLogPermissions class,
modify the model definition as follows:

class ContentSummaryLog(models.Model):

permissions = UserLogPermissions()

<remainder of model definition>

Specifying role-based permissions

Defining a custom Permissions class and overriding its methods allows for arbitrary logic to be used in defining the
rules governing the permissions, but many cases can be covered by more constrained rule specifications. In partic-
ular, the rules for many models can be specified in terms of the role- based permissions system described above. A
built-in subclass of BasePermissions, called RoleBasedPermissions, makes this easy. Creating an instance of
RoleBasedPermissions involves passing in the following parameters:

• Tuples of role kinds that should be granted each of the CRUD permissions, encoded in the following parameters:
can_be_created_by, can_be_read_by, can_be_updated_by, can_be_deleted_by.

• The target_field parameter that determines the “target” object for the role-checking; this should be the name
of a field on the model that foreign keys either onto a FacilityUser or a Collection. If the model we’re
checking permissions for is itself the target, then target_field may be ".".

An example, showing that read permissions should be granted to a coach or admin for the user referred to by the model’s
“user” field. Similarly, write permissions should only be available to an admin for the user:

class UserLog(models.Model):

permissions = RoleBasedPermissions(
target_field="user",
can_be_created_by=(role_kinds.ADMIN,),
can_be_read_by=(role_kinds.COACH, role_kinds.ADMIN),
can_be_updated_by=(role_kinds.ADMIN,),
can_be_deleted_by=(role_kinds.ADMIN,),

)

<remainder of model definition>

Built-in permissions classes

Some common rules are encapsulated by the permissions classes in kolibri.auth.permissions.general. These
include:

• IsOwn: only allows access to the object if the object belongs to the requesting user (in other words, if the object
has a specific field, field_name, that foreign keys onto the user)

• IsFromSameFacility: only allows access to object if user is associated with the same facility as the object

• IsSelf: only allows access to the object if the object is the user

76 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

A general pattern with these provided classes is to allow an argument called read_only, which means that rather than
allowing both write (create, update, delete) and read permissions, they will only grant read permission. So, for example,
IsFromSameFacility(read_only=True) will allow any user from the same facility to read the model, but not to
write to it, whereas IsFromSameFacility(read_only=False) or IsFromSameFacility() would allow both.

Combining permissions classes

In many cases, it may be necessary to combine multiple permission classes together to define the ruleset that you want.
This can be done using the Boolean operators | (OR) and & (AND). So, for example, IsOwn(field_name="user")
| IsSelf() would allow access to the model if either the model has a foreign key named “user” that points to the user,
or the model is itself the user model. Combining two permission classes with &, on the other hand, means both classes
must return True for a permission to be granted. Note that permissions classes combined in this way still support the
readable_by_user_filter method, returning a queryset that is either the union (for |) or intersection (&) of the
querysets that were returned by each of the permissions classes.

Checking permissions

Checking whether a user has permission to perform a CRUD operation on an object involves calling the appropriate
methods on the KolibriAbstractBaseUser (FacilityUser or DeviceOwner) instance. For instance, to check
whether request.user has delete permission for ContentSummaryLog instance log_obj, you could do:

if request.user.can_delete(log_obj):
log_obj.delete()

Checking whether a user can create an object is slightly different, as you may not yet have an instance of the model.
Instead, pass in the model class and a dict of the data that you want to create it with:

data = {"user": request.user, "content_id": "qq123"}
if request.user.can_create(ContentSummaryLog, data):

ContentSummaryLog.objects.create(**data)

To efficiently filter a queryset so that it only includes records that the user should have permission to read (to make sure
you’re not sending them data they shouldn’t be able to access), use the filter_readable method:

all_results = ContentSummaryLog.objects.filter(content_id="qq123")
permitted_results = request.user.filter_readable(all_results)

Note that for the DeviceOwner model, these methods will simply return True (or unfiltered querysets), as device own-
ers are considered superusers. For the FacilityUsermodel, they defer to the permissions encoded in the permission
object on the model class.

Using Kolibri permissions with Django REST Framework

There are two classes that make it simple to leverage the permissions system described above within a Django REST
Framework ViewSet, to restrict permissions appropriately on API endpoints, based on the currently logged-in user.

KolibriAuthPermissions is a subclass of rest_framework.permissions.BasePermission that defers to our
KolibriAbstractBaseUser permissions interface methods for determining which object-level permissions to grant
to the current user:

• Permissions for ‘POST’ are based on request.user.can_create

2.6. Backend architecture 77

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• Permissions for ‘GET’, ‘OPTIONS’ and ‘HEAD’ are based on request.user.can_read (Note that adding
KolibriAuthPermissions only checks object-level permissions, and does not filter queries made against a list
view; see KolibriAuthPermissionsFilter below)

• Permissions for ‘PUT’ and ‘PATCH’ are based on request.user.can_update

• Permissions for ‘DELETE’ are based on request.user.can_delete

KolibriAuthPermissions is a subclass of rest_framework.filters.BaseFilterBackend that filters list views
to include only records for which the current user has read permissions. This only applies to ‘GET’ requests.

For example, to use the Kolibri permissions system to restrict permissions for an API endpoint providing access to a
ContentLog model, you would do the following:

from kolibri.auth.api import KolibriAuthPermissions, KolibriAuthPermissionsFilter

class FacilityViewSet(viewsets.ModelViewSet):
permission_classes = (KolibriAuthPermissions,)
filter_backends = (KolibriAuthPermissionsFilter,)
queryset = ContentLog.objects.all()
serializer_class = ContentLogSerializer

2.6.3 User log module

This is a core module found in kolibri/core/logger.

Models

This app provides the core functionality for tracking user engagement with content and the Kolibri app.

It stores:

• details of users’ interactions with content

• summaries of those interactions

• interactions with the software in general

Eventually, it may also store user feedback on the content and the software.

class kolibri.core.logger.models.AttemptLog(*args, **kwargs)
This model provides a summary of a user’s interactions with a question in a content node. (Think of it like a
ContentNodeAttemptLog to distinguish it from ExamAttemptLog and BaseAttemptLog)

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• item (CharField) – Item

• start_timestamp (DateTimeTzField) – Start timestamp

• end_timestamp (DateTimeTzField) – End timestamp

78 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• completion_timestamp (DateTimeTzField) – Completion timestamp

• time_spent (FloatField) – (in seconds)

• complete (BooleanField) – Complete

• correct (FloatField) – Correct

• hinted (BooleanField) – Hinted

• answer (JSONField) – Answer

• simple_answer (CharField) – Simple answer

• interaction_history (JSONField) – Interaction history

• user_id (ForeignKey to ~) – User

• error (BooleanField) – Error

• masterylog_id (ForeignKey to ~) – Masterylog

• sessionlog_id (ForeignKey to ~) – Sessionlog

exception DoesNotExist

exception MultipleObjectsReturned

infer_dataset(*args, **kwargs)
This method is used by ensure_dataset to “infer” which dataset should be associated with this instance.
It should be overridden in any subclass of AbstractFacilityDataModel, to define a model-specific
inference.

class kolibri.core.logger.models.BaseAttemptLog(*args, **kwargs)
This is an abstract model that provides a summary of a user’s interactions with a particular item/question in an
assessment/exercise/exam

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• item (CharField) – Item

• start_timestamp (DateTimeTzField) – Start timestamp

• end_timestamp (DateTimeTzField) – End timestamp

• completion_timestamp (DateTimeTzField) – Completion timestamp

• time_spent (FloatField) – (in seconds)

• complete (BooleanField) – Complete

• correct (FloatField) – Correct

• hinted (BooleanField) – Hinted

• answer (JSONField) – Answer

• simple_answer (CharField) – Simple answer

2.6. Backend architecture 79

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• interaction_history (JSONField) – Interaction history

• user_id (ForeignKey to ~) – User

• error (BooleanField) – Error

class kolibri.core.logger.models.BaseLogModel(*args, **kwargs)

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

calculate_partition()

Should return a string specifying this model instance’s partition, using self.ID_PLACEHOLDER in place
of its own ID, if needed.

infer_dataset(*args, **kwargs)
This method is used by ensure_dataset to “infer” which dataset should be associated with this instance.
It should be overridden in any subclass of AbstractFacilityDataModel, to define a model-specific
inference.

class kolibri.core.logger.models.BaseLogQuerySet(model=None, query=None, using=None,
hints=None)

filter_by_content_ids(content_ids, content_id_lookup='content_id')
Filter a set of logs by content_id, using content_ids from the provided list or queryset.

filter_by_topic(topic, content_id_lookup='content_id')
Filter a set of logs by content_id, using content_ids from all descendants of specified topic.

class kolibri.core.logger.models.ContentSessionLog(*args, **kwargs)
This model provides a record of interactions with a content item within a single visit to that content page.

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• user_id (ForeignKey to ~) – User

• content_id (UUIDField) – Content id

• visitor_id (UUIDField) – Visitor id

• channel_id (UUIDField) – Channel id

• start_timestamp (DateTimeTzField) – Start timestamp

• end_timestamp (DateTimeTzField) – End timestamp

• time_spent (FloatField) – (in seconds)

80 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• progress (FloatField) – Progress

• kind (CharField) – Kind

• extra_fields (JSONField) – Extra fields

exception DoesNotExist

exception MultipleObjectsReturned

save(*args, **kwargs)
Saves the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

class kolibri.core.logger.models.ContentSummaryLog(*args, **kwargs)
This model provides an aggregate summary of all recorded interactions a user has had with a content item over
time.

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• user_id (ForeignKey to ~) – User

• content_id (UUIDField) – Content id

• channel_id (UUIDField) – Channel id

• start_timestamp (DateTimeTzField) – Start timestamp

• end_timestamp (DateTimeTzField) – End timestamp

• completion_timestamp (DateTimeTzField) – Completion timestamp

• time_spent (FloatField) – (in seconds)

• progress (FloatField) – Progress

• kind (CharField) – Kind

• extra_fields (JSONField) – Extra fields

exception DoesNotExist

exception MultipleObjectsReturned

calculate_source_id()

Should return a string that uniquely defines the model instance or None for a random uuid.

save(*args, **kwargs)
Saves the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

2.6. Backend architecture 81

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

class kolibri.core.logger.models.ExamAttemptLog(*args, **kwargs)
This model provides a summary of a user’s interactions with a question in an exam

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• item (CharField) – Item

• start_timestamp (DateTimeTzField) – Start timestamp

• end_timestamp (DateTimeTzField) – End timestamp

• completion_timestamp (DateTimeTzField) – Completion timestamp

• time_spent (FloatField) – (in seconds)

• complete (BooleanField) – Complete

• correct (FloatField) – Correct

• hinted (BooleanField) – Hinted

• answer (JSONField) – Answer

• simple_answer (CharField) – Simple answer

• interaction_history (JSONField) – Interaction history

• user_id (ForeignKey to ~) – User

• error (BooleanField) – Error

• examlog_id (ForeignKey to ~) – Examlog

• content_id (UUIDField) – Content id

exception DoesNotExist

exception MultipleObjectsReturned

calculate_partition()

Should return a string specifying this model instance’s partition, using self.ID_PLACEHOLDER in place
of its own ID, if needed.

infer_dataset(*args, **kwargs)
This method is used by ensure_dataset to “infer” which dataset should be associated with this instance.
It should be overridden in any subclass of AbstractFacilityDataModel, to define a model-specific
inference.

class kolibri.core.logger.models.ExamLog(*args, **kwargs)
This model provides a summary of a user’s interactions with an exam, and serves as an aggregation point for
individual attempts on questions in that exam.

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

82 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• exam_id (ForeignKey to ~) – Exam

• user_id (ForeignKey to ~) – User

• closed (BooleanField) – Closed

• completion_timestamp (DateTimeTzField) – Completion timestamp

exception DoesNotExist

exception MultipleObjectsReturned

calculate_partition()

Should return a string specifying this model instance’s partition, using self.ID_PLACEHOLDER in place
of its own ID, if needed.

calculate_source_id()

Should return a string that uniquely defines the model instance or None for a random uuid.

class kolibri.core.logger.models.GenerateCSVLogRequest(*args, **kwargs)
This model provides a record of a user’s request to generate session and summary log files

Parameters

• id (AutoField) – Id

• facility_id (ForeignKey to ~) – Facility

• selected_start_date (DateTimeTzField) – Selected start date

• selected_end_date (DateTimeTzField) – Selected end date

• date_requested (DateTimeTzField) – Date requested

• log_type (CharField) – Log type

exception DoesNotExist

exception MultipleObjectsReturned

class kolibri.core.logger.models.MasteryLog(*args, **kwargs)
This model provides a summary of a user’s engagement with an assessment within a mastery level

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• user_id (ForeignKey to ~) – User

• summarylog_id (ForeignKey to ~) – Summarylog

• mastery_criterion (JSONField) – Mastery criterion

• start_timestamp (DateTimeTzField) – Start timestamp

2.6. Backend architecture 83

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• end_timestamp (DateTimeTzField) – End timestamp

• completion_timestamp (DateTimeTzField) – Completion timestamp

• mastery_level (IntegerField) – Mastery level

• complete (BooleanField) – Complete

• time_spent (FloatField) – (in seconds)

exception DoesNotExist

exception MultipleObjectsReturned

calculate_source_id()

Should return a string that uniquely defines the model instance or None for a random uuid.

infer_dataset(*args, **kwargs)
This method is used by ensure_dataset to “infer” which dataset should be associated with this instance.
It should be overridden in any subclass of AbstractFacilityDataModel, to define a model-specific
inference.

class kolibri.core.logger.models.UserSessionLog(*args, **kwargs)
This model provides a record of a user session in Kolibri.

Parameters

• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

• dataset_id (ForeignKey to ~) – Dataset

• user_id (ForeignKey to ~) – User

• channels (TextField) – Channels

• start_timestamp (DateTimeTzField) – Start timestamp

• last_interaction_timestamp (DateTimeTzField) – Last interaction timestamp

• pages (TextField) – Pages

• device_info (CharField) – Device info

exception DoesNotExist

exception MultipleObjectsReturned

classmethod update_log(user, os_info=None, browser_info=None)
Update the current UserSessionLog for a particular user.

ua_parser never defaults the setting of os.family and user_agent.family It uses the value ‘other’ whenever
the values are not recognized or the parsing fails. The code depends on this behaviour.

84 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Concepts and definitions

All logs use MorangoDB to synchronize their data across devices.

Content session logs

These models provide a high-level record that a user interacted with a content item for some contiguous period of time.
This generally corresponds to the time between when a user navigates to the content and when they navigate away from
it.

Specifically, it encodes the channel that the content was in, the id of the content, which user it was, and time-related
date. It may also encode additional data that is specific to the particular content type in a JSON blob.

As a typical use case, a ContentSessionLog object might be used to record high-level information about how long a
user engaged with an exercise or a video during a single viewing. More granular interaction information about what
happened within the session may be stored in another model such as an attempt log, below.

Content summary logs

These models provide an aggregate summary of all interactions of a user with a content item. It encodes the channel
that the content was in, the id of the content, and information such as cummulative time spent. It may also encode
additional data specific to the particular content type in a JSON blob.

As a typical use case, a ContentSummaryLog object might be used to provide summary data about the state of com-
pletion of a particular exercise, video, or other content.

When a new ContentSessionLog is saved, the associated ContentSummaryLog is updated at the same time. This means
that the ContentSummaryLog acts as an aggregation layer for the progress of a particular piece of content.

To implement this, a content viewer app would define the aggregation function that summarizes session logs into the
summary log. While this could happen in the frontend, it would probably be more efficient for this to happen on the
server side.

These logs will use MorangoDB to synchronize their data across devices - in the case where two summary logs from
different devices conflict, then the aggregation logic would be applied across all interaction logs to create a consolidated
summary log.

Attempt logs

These models store granular information about a user’s interactions with individual components of some kind of assess-
ment. There are two subclasses: AttemptLog which tracks attempts at questions within exercises, and ExamAttemptLog
which tracks attempts at questions within exams.

Exam logs

These models provide information about when users took exams.

2.6. Backend architecture 85

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

User session logs

These models provide a record of a user session in Kolibri. It encodes the channels interacted with, the length of time
engaged, and the specific pages visited.

Concretely, a UserSessionLog records which pages a user visits and how long the user is logged in for.

Implementation details

Permissions

See Encoding Permission Rules.

2.6.4 Kolibri plugin architecture

The behavior of Kolibri can be extended using plugins. The following is a guide to developing plugins.

Enabling and disabling plugins

Non-core plugins can be enabled or disabled using the kolibri plugin commands.

How plugins work

From a user’s perspective, plugins are enabled and disabled through the command line interface or through a UI. Users
can also configure a plugin’s behavior through the main Kolibri interface.

From a developer’s perspective, plugins are wrappers around Django applications, listed in ACTIVE_PLUGINS on the
kolibri config object. They are initialized before Django’s app registry is initialized and then their relevant Django apps
are added to the INSTALLED_APPS of kolibri.

Loading a plugin

In general, a plugin should never modify internals of Kolibri or other plugins without using the hooks API or normal
conventional Django scenarios.

Note: Each app in ACTIVE_PLUGINS in the kolibri conf is searched for the special kolibri_plugin module.

Everything that a plugin does is expected to be defined through <myapp>/kolibri_plugin.py.

86 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Kolibri Hooks API

What are hooks

Hooks are classes that define something that happens at one or more places where the hook is looked for and applied.
It means that you can “hook into a component” in Kolibri and have it do a predefined and parameterized thing. For
instance, Kolibri could ask all its plugins who wants to add something to the user settings panel, and its then up to the
plugins to inherit from that specific hook and feed back the parameters that the hook definition expects.

The consequences of a hook being applied can happen anywhere in Kolibri. Each hook is defined through a class
inheriting from KolibriHook. But how the inheritor of that class deals with plugins using it, is entirely up to each
specific implementation and can be applied in templates, views, middleware - basically everywhere!

That’s why you should consult the class definition and documentation of the hook you are adding plugin functionality
with.

We have two different types of hooks:

Abstract hooks
Are definitions of hooks that are implemented by implementing hooks. These hooks are Python abstract base
classes, and can use the @abstractproperty and @abstractmethod decorators from the abc module in order to
define which properties and methods their descendant registered hooks should implement.

Registered hooks
Are concrete hooks that inherit from abstract hooks, thus embodying the definitions of the abstract hook into a
specific case. If the abstract parent hook has any abstract properties or methods, the hook being registered as a
descendant must implement those properties and methods, or an error will occur.

So what’s “a hook”?
Simply referring to “a hook” is okay, it can be ambiguous on purpose. For instance, in the example, we talk
about “a navigation hook”. So we both mean the abstract definition of the navigation hook and everything that
is registered for the navigation.

Where can I find hooks?

All Kolibri core applications and plugins alike should by convention define their abstract hooks inside <myapp>/
hooks.py. Thus, to see which hooks a Kolibri component exposes, you can refer to its hooks module.

Note: Defining abstract hooks in <myapp>/hooks.py isn’t mandatory, but loading a concrete hook in <myapp>/
kolibri_plugin.py is.

Warning: Do not define abstract and registered hooks in the same module. Or to put it in other words: Always
put registered hooks in <myapp>/kolibri_plugin.py. The registered hooks will only be initialized for use by
the Kolibri plugin registry if they are registered inside the kolibri_plugin.py module for the plugin.

2.6. Backend architecture 87

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

In which order are hooks used/applied?

This is entirely up to the registering class. By default, hooks are applied in the same order that the registered hook gets
registered! While it could be the case that plugins could be enabled in a certain order to get a specific ordering of hooks
- it is best not to depend on this behaviour as it could result in brittleness.

An example of a plugin using a hook

Note: The example shows a NavigationHook which is simplified for the sake of readability. The actual implementation
in Kolibri will differ.

Example implementation

Here is an example of how to use a hook in myplugin.kolibri_plugin.py:

from kolibri.core.hooks import NavigationHook
from kolibri.plugins.hooks import register_hook

@register_hook
class MyPluginNavItem(NavigationHook):

bundle_id = "side_nav"

The decorator @register_hook signals that the wrapped class is intended to be registered against any abstract Kolib-
riHook descendants that it inherits from. In this case, the hook being registered inherits from NavigationHook, so any
hook registered will be available on the NavigationHook.registered_hooks property.

Here is the definition of the abstract NavigationHook in kolibri.core.hooks:

from kolibri.core.webpack.hooks import WebpackBundleHook
from kolibri.plugins.hooks import define_hook

@define_hook
class NavigationHook(WebpackBundleHook):

pass

As can be seen from above, to define an abstract hook, instead of using the @register_hook decorator, the
@define_hook decorator is used instead, to signal that this instance of inheritance is not intended to register anything
against the parent WebpackBundleHook. However, because of the inheritance relationship, any hook registered against
NavigationHook (like our example registered hook above), will also be registered against the WebpackBundleHook,
so we should expect to see our plugin’s nav item listed in the WebpackBundleHook.registered_hooks property as
well as in the NavigationHook.registered_hooks property.

88 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Usage of the hook

The hook can then be used to collect all the information from the hooks, as per this usage of the NavigationHook in
kolibri/core/kolibri_plugin.py:

from kolibri.core.hooks import NavigationHook

...
def navigation_tags(self):

return [
hook.render_to_page_load_sync_html()
for hook in NavigationHook.registered_hooks

]

Each registered hook is iterated over and its appropriate HTML for rendering into the frontend are returned. When
iterating over registered_hooks the returned objects are each instances of the hook classes that were registered.

Warning: Do not load registered hook classes outside of a plugin’s kolibri_plugin. Either define them there
directly or import the modules that define them. Hook classes should all be seen at load time, and placing that logic
in kolibri_plugin guarantees that things are registered correctly.

Defining a plugin

A plugin must have a Python module inside it called kolibri_plugin, inside this there must be an object subclassed
from KolibriPluginBase - here is a minimal example:

from kolibri.plugins import KolibriPluginBase

class ExamplePlugin(KolibriPluginBase):
pass

The Python module that contains this kolibri_plugin module can now be enabled and disabled as a plugin. If the
module path for the plugin is kolibri.plugins.example_plugin then it could be enabled by:

kolibri plugin enable kolibri.plugins.example_plugin

The above command can be passed multiple plugin names to enable at once. If Kolibri is running, it needs to be
restarted for the change to take effect.

Similarly, to disable the plugin the following command can be used:

kolibri plugin disable kolibri.plugins.example_plugin

To exactly set the currently enabled plugins (disabling all other plugins, and enabling the ones specified) you can do
this:

kolibri plugin apply kolibri.plugins.learn kolibri.plugins.default_theme

This will disable all other plugins and only enable kolibri.plugins.learn and kolibri.plugins.default_theme`.

2.6. Backend architecture 89

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Creating a plugin

Plugins can be standalone Django apps in their own right, meaning they can define templates, models, new urls, and
views just like any other app. Any activated plugin is added to the INSTALLED_APPS setting of Django, so any models,
templates, or templatetags defined in the conventional way for Django inside an app will work inside of a Kolibri plugin.

In addition, Kolibri exposes some additional functionality that allows for the core URLs, Django settings, and Kolibri
options to be extended by a plugin. These are set

class ExamplePlugin(KolibriPluginBase):
untranslated_view_urls = "api_urls"
translated_view_urls = "urls"
options = "options"
settings = "settings"

These are all path references to modules within the plugin itself, so options would be accessible on the Python module
path as kolibri.plugins.example_plugin.options.

untranslated_view_urls, translated_view_urls should both be standard Django urls modules in the plugin
that expose a urlpatterns variable - the first will be mounted as API urls - with no language prefixing, the second
will be mounted with language prefixing and will be assumed to contain language specific content.

settings should be a module containing Django settings that should be added to the Kolibri settings. This should
not be used to override existing settings (and an error will be thrown if it is used in this way), but rather as a way for
plugins to add additional settings to the Django settings. This is particularly useful when a plugin is being used to
wrap a Django library that requires its own settings to define its behaviour - this module can be used to add these extra
settings in a way that is encapsulated to the plugin.

options should be a module that exposes a variable options_spec which defines Kolibri options specific to
this plugin. For more information on how to configure these, see the base Kolibri options specification in
kolibri/utils/options.py. These values can then be set either by environment variables or by editing the options.
ini file in the KOLIBRI_HOME directory. These options values can also be used inside the settings module above, to
provide customization of plugin specific behaviour. These options cannot clash with existing Kolibri options defined
in kolibri.utils.options, except in order to change the default value of a Kolibri option - attempting to change
any other value of a core Kolibri option will result in a Runtime Error.

A very common use case for plugins is to implement a single page app or other Kolibri module for adding frontend
functionality using Kolibri Javascript code. Each of these Javascript bundles are defined in the kolibri_plugin.py file
by subclassing the WebpackBundleHook class to define each frontend Kolibri module. This allows a webpack built
Javascript bundle to be cross-referenced and loaded into Kolibri. For more information on developing frontend code
for Kolibri please see Frontend architecture.

90 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Learn plugin example

View the source to learn more!

2.6.5 Kolibri backend tasks system

Kolibri plugins and Django apps can use the backend tasks system to run time consuming processes asynchronously
outside of the HTTP request-response cycle. This frees the HTTP server for client use.

The kolibri task system is implemented as a core Django app on kolibri.core.tasks.

Kolibri backend tasks system flow diagram

The following diagram explains how a task travels from the frontend client to the different parts of the backend task
system. It aims to give a high level understanding of the backend tasks system.

You should download the following image to be able to zoom it in your image viewer. You can download by right
clicking on following image and select “save image as” option.

2.6. Backend architecture 91

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Defining tasks via @register_task decorator

When Kolibri starts, the task backend searches for a module named tasks.py in every Django app and imports them,
which results in the registration of tasks defined within.

When the tasks.py module gets run, functions decorated with @register_task decorator gets registered in the
JobRegistry.

The @register_task decorator is implemented in kolibri.core.tasks.decorators. It registers the decorated
function as a task to the task backend system.

Kolibri plugins and kolibri’s Django apps can pass several arguments to the decorator based on their needs.

• job_id (string): job’s id.

• queue (string): queue in which the job should be enqueued.

• validator (callable): validator for the job. The details of how validation works is described later.

• priority (5 or 10): priority of the job. It can be "HIGH" (5) or "REGULAR"``(``10). "REGULAR" priority
is for tasks that can wait for some time before it actually starts executing. Tasks that are shown to users in the
task manager should use "REGULAR" priority. "HIGH" priority is used for tasks that need execution as soon as
possible. These are often short-lived tasks that temporarily block user interaction using a loading animation (for
example, tasks that import channel metadata before browsing).

• cancellable (boolean): whether the job is cancellable or not.

• track_progress (boolean): whether to track progress of the job or not.

• permission_classes (Django Rest Framework's permission classes): a list of DRF permissions
user should have in order to enqueue the job.

Example usage

The below code sample shows how we can use the @register_task decorator to register a function as a task.

We will refer to below sample code in the later sections also.

from rest_framework import serializers

from kolibri.core.tasks.decorators import register_task
from kolibri.core.tasks.job import Priority
from kolibri.core.tasks.permissions import IsSuperAdmin
from kolibri.core.tasks.validation import JobValidator

class AddValidator(JobValidator):
a = serializers.IntegerField()
b = serializers.IntegerField()

def validate(self, data):
if data['a'] + data['b'] > 100:

raise serializers.ValidationError("Sum of a and b should be less than 100")
job_data = super(AddValidator, self).validate(data)
job_data["extra_metadata"].update({"user": "kolibri"})
return job_data

@register_task(job_id="02", queue="maths", validator=AddValidator, priority=Priority.
→˓HIGH, cancellable=False, track_progress=True, permission_classes=[IsSuperAdmin])

(continues on next page)

92 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

def add(a, b):
return a + b

Enqueuing tasks via the POST /api/tasks/tasks/ API endpoint

To enqueue a task that is registered with the @register_task decorator we use POST /api/tasks/tasks/ endpoint
method defined on kolibri.core.tasks.api.BaseViewSet.create.

The request payload for POST /api/tasks/tasks/ API endpoint should have:

• "type" (required) having value as string representing the dotted path to the function registered via the
@register_task decorator.

• other key value pairs as per client’s choice.

A valid request payload can be:

{
"type": "kolibri.core.content.tasks.add",
"a": 45,
"b": 49

}

A successful response looks like this:

{
"status": "QUEUED",
"exception": "",
"traceback": "",
"percentage": 0,
"id": 1,
"cancellable": False,
"clearable": False,

}

When we send a request to POST /api/tasks/tasks/ API endpoint, first, we validate the payload. The re-
quest payload must have a "type" parameter as string and the user should have the permissions mentioned on the
permission_classes argument of decorator. If the user has permissions then we proceed.

Then, we check whether the registered task function has a validator associated with it or not. If it has a validator, it gets
run. The return value of the validator must be a dictionary that conforms to the function signature of the Job object.
The dictionary returned by the validator is passed to a Job object to be enqueued. By default, any key value pairs in the
request object that are registered as input fields on the validator will be passed to the function as kwargs. If no fields
are defined on the validator, or no validator is registered, then the function will receive no arguments.

We can add extra_metadata in the returning dictionary of validator function to set extra metadata for the job. If the
validator raises any exception, our API endpoint method will re raise it. Keep in mind that extra_metadata is not
passed to the task function as an argument.

For example, if the validator returns a dictionary like:

{
"kwargs" : {

"a": req_data["a"],
"b": req_data["b"],

(continues on next page)

2.6. Backend architecture 93

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

},
"extra_metadata": {
"user": "kolibri"

}
}

The task function will receive a and b as keyword arguments.

Once the validator is run and no exceptions are raised, we enqueue the "task" function. Depending on the priority
of the task, the worker pool will run the task.

We can also enqueue tasks in bulk. The frontend just have to send a list of tasks, like:

[
{
"type": "kolibri.core.content.tasks.add",
"a": 45,
"b": 49

},
{
"type": "kolibri.core.content.tasks.add",
"a": 20,
"b": 52

},
{
"type": "kolibri.core.content.tasks.subtract",
"a": 10,
"b": 59

}
]

The tasks backend will iterate over this list and it will perform the operations of a task on every "type" function –
checking permissions, running the validator and enqueuing the task function.

The response will be a list of enqueued jobs like:

[
{
"status": "QUEUED",
"exception": "",
"traceback": "",
"percentage": 0,
"id": "e05ad2b3-eae8-4e29-9f00-b16accfee3e2",
"cancellable": False,
"clearable": False,

},
{
"status": "QUEUED",
"exception": "",
"traceback": "",
"percentage": 0,
"id": "329f0fe0-bfb0-47f8-9e33-0468ef9805e5",
"cancellable": False,
"clearable": False,

(continues on next page)

94 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

},
{
"status": "QUEUED",
"exception": "",
"traceback": "",
"percentage": 0,
"id": "895a881a-6825-4be0-8bd4-0e8db40ab324",
"cancellable": False,
"clearable": False,

}
]

However, if any task fails validation, all tasks in the request will be rejected. Validation happens prior to enqueuing, so
tasks will not be partially started in the bulk case.

2.6.6 Distribution build pipeline

The Kolibri Package build pipeline looks like this:

Git release branch
|
|
/ \
/ \

Python dist, online dependencies \
`python setup.py bdist_wheel` \

/ \
/ Python dist, bundled dependencies

Upload to PyPi `python setup.py bdist_wheel --static`
Installable with \

`pip install kolibri` \
Upload to PyPi
Installable with

`pip install kolibri-static`
/ | \

/ | \
Windows Android Debian
installer APK installer

Make targets

• To build a wheel file, run make dist

• To build a pex file, run make pex after make dist

• Builds for additional platforms are triggered from buildkite based on .buildkite/pipeline.yml

2.6. Backend architecture 95

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

More on version numbers

Note: The content below is pulled from the docstring of the kolibri.utils.version module.

We follow semantic versioning 2.0.0 according to semver.org but for Python distributions and in the internal string
representation in Python, you will find a PEP-440 flavor.

• 1.1.0 (Semver) = 1.1.0 (PEP-440).

• 1.0.0-alpha1 (Semver) = 1.0.0a1 (PEP-440).

Here’s how version numbers are generated:

• kolibri.__version__ is automatically set, runtime environments use it to decide the version of Kolibri as a
string. This is especially something that PyPi and setuptools use.

• kolibri.VERSION is a tuple containing major, minor, and patch version information, it’s set in kolibri/
__init__.py

• kolibri/VERSION is a file containing the exact version of Kolibri for a distributed environment - when it exists,
as long as its major, minor, and patch versions are compatible with kolibri.VERSION then it is used as the
version. If these versions do not match, an AssertionError will be thrown.

• git describe --tags is a command run to fetch tag information from a git checkout with the Kolibri code.
The information is used to validate the major components of kolibri.VERSION and to add a suffix (if needed).
This information is stored permanently in kolibri/VERSION before shipping any built asset by calling make
writeversion during make dist etc.

This table shows examples of kolibri.VERSION and git data used to generate a specific version:

Release type kolibri.
VERSION

Git data Examples

Final (1, 2, 3) Final tag: e.g. v1.2.3 1.2.3
dev release (al-
pha0)

(1, 2, 3) timestamp of latest com-
mit + hash

1.2.3.dev0+git.123.f1234567

alpha1+ (1, 2, 3) Alpha tag: e.g. v1.2.3a1 Clean head: 1.2.3a1, 4 changes since tag:
1.2.3a1.dev0+git.4.f1234567

beta1+ (1, 2, 3) Beta tag: e.g. v1.2.3b1 Clean head: 1.2.3b1, 5 changes since tag:
1.2.3b1.dev0+git.5.f1234567

rc1+ (release
candidate)

(1, 2, 3) RC tag: e.g. v1.2.3rc1 Clean head: 1.2.3rc1, Changes since tag:
1.2.3rc1.dev0+git.f1234567

Built assets: kolibri/VERSION is auto-generated with make writeversion during the build process. The file is
read in preference to git data in order to prioritize swift version resolution in an installed environment.

Release order example 1.2.3 release:

• VERSION = (1, 2, 3) throughout the development phase, this results in a lot of 1.2.3.dev0+git1234abcd
with no need for git tags.

• VERSION = (1, 2, 3) for the first alpha release, a git tag v1.2.3a0 is made.

Warning: Do not import anything from the rest of Kolibri in this module, it’s crucial that it can be loaded without
the settings/configuration/django stack.

96 Chapter 2. Table of contents

http://semver.org/
https://www.python.org/dev/peps/pep-0440/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

If you wish to use version.py in another project, raw-copy the contents of this file. You cannot import this module in
other distributed package’s __init__, because setup.py cannot depend on the import of other packages at install-time
(which is when the version is generated and stored).

Warning: Tagging is known to break after rebasing, so in case you rebase a branch after tagging it, delete the
tag and add it again. Basically, git describe --tags detects the closest tag, but after a rebase, its concept of
distance is misguided.

2.6.7 Upgrading

Warning: These instructions are under development

Upgrade paths

Kolibri can be automatically upgraded forwards. For instance, you can upgrade from 0.1->0.2 and 0.1->0.7. For
changes in the database schema we use Django database migrations to manage these changes and make updates on
upgrade. When changes are made to model schema during development, then these migrations can be generated by
executing kolibri manage makemigrations.

This will trigger the Django management command that will inspect the current model schema, the current migrations,
and generate new migrations to cover any discrepancies. For some migrations, manual editing will be required to
ensure compatibility with Python 2 and 3 - this normally happens for Django Model fields that take a choices keyword
argument, where the choices are strings. The strings should have no prefix (u or b) and the migration should contain
from __future__ import unicode_literals as an import.

We also use the upgrade functionality triggered during the CLI initialization to copy in new copies of static files that are
used in the frontend app. These upgrades are only triggered for a subset of our CLI commands - start, services, manage,
shell. Ones that ultimately start Django processes. In examining cli.py - those commands that are instantiated using
the cls=KolibriDjangoCommand keyword argument will trigger this update behaviour.

As well as database migrations, there are also sometimes additional fixes that are put into Kolibri in order to facilitate
moving between versions. This may be for bug fixing or efficiency purposes. These are sometimes carried out outside
of migrations in order to leverage the full Kolibri code base, which can be restricted inside the contexts of Django data
migrations.

In order to implement these upgrades, a decorator is available in kolibri.core.upgrade, version_upgrade. An
toy example is shown below.

import logging
from kolibri.core.upgrade import version_upgrade

logger = logging.getLogger(__name__)

@version_upgrade(old_version="<0.6.4", new_version=">=1.0.0")
def big_leap_upgrade():

logger.warning("You've just upgraded from a very old version to a very new version!")

If placed into a file named upgrade.py either in a core app that is part of the INSTALLED_APPS Django setting, or
is in an activated Kolibri plugin, this upgrade will be picked up and run any time an upgrade happens from a Kolibri
version older than 0.6.4 to a Kolibri version equal to or newer than 1.0.0.

2.6. Backend architecture 97

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.6.8 Learning facility data syncing

Kolibri features the capability to synchronize facility data between Kolibri instances, which supports its hybrid, dis-
tance, and offline learning applications. Each Kolibri instance is able to sync partitioned datasets (a learning facility)
in a peer-to-peer manner. To enable this functionality, Learning Equality developed a pure python database replication
engine for Django, called Morango (repository, documentation). Morango has several important features:

• A certificate-based authentication system to protect privacy and integrity of data

• A change-tracking system to support calculation of differences between databases across low-bandwidth connec-
tions

• A set of constructs to support data partitioning

The auth module found in kolibri/core/auth contains most of the Kolibri specific code that powers this feature.

The sync management command

The sync management command inside the auth module uses Morango’s tooling to manage facility syncs between
itself and other Kolibri devices, as well as Kolibri Data Portal.

Integrating with a sync

There are two primary ways in which Kolibri plugins may integrate with a sync:

a) Adding a Morango sync operation, which may execute at any stage of a sync

b) Adding a hook functions, which may execute before or after a sync transfer

When considering these two options, you should consider the following:

a) If the integration is vital to features being developed, a Morango sync operation should be implemented. This
brings the benefit of providing integrity with the corresponding synced data, such that both are atomically applied.

b) If the integration isn’t vital and is fail-tolerant, a sync hook function is the ideal choice as their execution does
not impede the sync in any way.

Morango sync operations

A Morango operation is can be injected into any stage of a sync transfer, which include the following:
INITIALIZING, SERIALIZING, QUEUING, TRANSFERRING, DEQUEUING, DESERIALIZING, and CLEANUP. Morango
uses Django settings to manage which operations occur during each stage, but Kolibri builds upon by specifying one
KolibriSyncOperation (code) that invokes each operation registered by Kolibri plugins.

Here’s an example of a Kolibri plugin adding a custom sync operations:

from morango.sync.operations import LocalOperation

from kolibri.core.auth.hooks import FacilityDataSyncHook
from kolibri.core.auth.sync_operations import KolibriSyncOperationMixin
from kolibri.plugins.hooks import register_hook

class CustomCleanupOperation(KolibriSyncOperationMixin, LocalOperation):
priority = 5

(continues on next page)

98 Chapter 2. Table of contents

https://github.com/learningequality/morango
https://morango.readthedocs.io/en/latest/
https://github.com/learningequality/kolibri/blob/d2ea094bf9532ed1d7eec5ee1e16203c67a74b6d/kolibri/core/auth/sync_operations.py#L22

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

def handle_initial(self, context):
"""
:type context: morango.sync.context.LocalSessionContext
"""
CUSTOM CODE HERE

@register_hook
class MyPluginSyncHook(FacilityDataSyncHook):

cleanup_operations = [CustomCleanupOperation()]

Sync hook functions

Sync hook functions utilize the same class as above, FacilityDataSyncHook, but instead may defined
pre_transfer or post_transfer methods.

Here’s an example of a Kolibri plugin adding a custom hooks:

from kolibri.core.auth.hooks import FacilityDataSyncHook
from kolibri.plugins.hooks import register_hook

@register_hook
class MyPluginSyncHook(FacilityDataSyncHook):

def pre_transfer(
self,
dataset_id,
local_is_single_user,
remote_is_single_user,
single_user_id,
context,

):
"""
Invoked before the initialization stage
:type dataset_id: str
:type local_is_single_user: bool
:type remote_is_single_user: bool
:type single_user_id: str
:type context: morango.sync.context.LocalSessionContext
"""
CUSTOM CODE HERE

def post_transfer(
self,
dataset_id,
local_is_single_user,
remote_is_single_user,
single_user_id,
context,

):
"""
Invoked at after the cleanup stage
:type dataset_id: str

(continues on next page)

2.6. Backend architecture 99

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

:type local_is_single_user: bool
:type remote_is_single_user: bool
:type single_user_id: str
:type context: morango.sync.context.LocalSessionContext
"""
CUSTOM CODE HERE

2.7 Server/client communication

2.7.1 Server API

The Kolibri server represents data as Django Models. These models are defined in models.py files, which can be
found in the folders of the different Django apps/plugins.

In Django, Model data are usually exposed to users through webpages that are generated by the Django server. To make
the data available to the Kolibri client, which is a single-page app, the Models are exposed as JSON data through a REST
API provided by the Django REST Framework (DRF). It’s important to remark that Kolibri limits the content types
the DRF api support to be only application/json or multipart/form-data. This limitation is set at kolibri/
core/negotiation.py.

In the api.py files, Django REST framework ViewSets are defined which describe how the data is made available
through the REST API. Each ViewSet also requires a defined Serializer, which describes the way in which the data
from the Django model is serialized into JSON and returned through the REST API. Additionally, optional filters can
be applied to the ViewSet which will allow queries to filter by particular features of the data (for example by a field)
or by more complex constraints, such as which group the user associated with the data belongs to. Permissions can be
applied to a ViewSet, allowing the API to implicitly restrict the data that is returned, based on the currently logged in
user.

The default DRF use of Serializers for serialization to JSON tends to encourage the adoption of non-performant patterns
of code, particularly ones that use DRF Serializer Method Fields, which then do further queries on a per model basis
inside the method. This can easily result in the N + 1 query problem, whereby the number of queries required scales
with the number of entities requested in the query. To make this and other performance issues less of a concern, we
have created a special ValuesViewset class defined at kolibri/core/api.py, which relies on queryset annotation
and post query processing in order to serialize all the relevant data. In addition, to prevent the inflation of full Django
models into memory, all queries are done with a values call resulting in lower memory overhead.

Finally, in the api_urls.py file, the ViewSets are given a name (through the basename keyword argument), which
sets a particular URL namespace, which is then registered and exposed when the Django server runs. Sometimes,
a more complex URL scheme is used, as in the content core app, where every query is required to be prefixed by a
channel id (hence the <channel_id> placeholder in that route’s regex pattern)

Listing 1: api_urls.py

router = routers.SimpleRouter()
router.register("channel", ChannelMetadataViewSet, basename="channel")

router.register(r"contentnode", ContentNodeViewset, basename="contentnode")
router.register(

r"contentnode_tree", ContentNodeTreeViewset, basename="contentnode_tree"
)
router.register(

r"contentnode_search", ContentNodeSearchViewset, basename="contentnode_search"
(continues on next page)

100 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

)
router.register(r"file", FileViewset, basename="file")
router.register(

r"contentnodeprogress", ContentNodeProgressViewset, basename="contentnodeprogress"
)
router.register(

r"contentnode_granular",
ContentNodeGranularViewset,
basename="contentnode_granular",

)
router.register(r"remotechannel", RemoteChannelViewSet, basename="remotechannel")

urlpatterns = [url(r"^", include(router.urls))]

To explore the server REST APIs, visit /api_explorer/ on the Kolibri server while running with developer settings.

2.7.2 Client resource layer

To access this REST API in the frontend Javascript code, an abstraction layer has been written to reduce the complexity
of inferring URLs, caching resources, and saving data back to the server.

Resources

In order to access a particular REST API endpoint, a Javascript Resource has to be defined, an example is shown here

Listing 2: channel.js

import { Resource } from 'kolibri.lib.apiResource';

export default new Resource({
name: 'channel',

});

Here, the name property is set to 'channel' in order to match the basename assigned to the /channel endpoint in
api_urls.py.

If this resource is part of the core app, it can be added to a global registry of resources inside kolibri/core/assets/
src/api-resources/index.js. Otherwise, it can be imported as needed, such as in the coach reports module.

Models

The instantiated Resource can then be queried for client side representations of particular information. For a represen-
tation of a single server side Django model, we can request a Model from the Resource, using fetchModel

// corresponds to resource address /api/content/contentnode/<id>
const modelPromise = ContentNodeResource.fetchModel(id);

The argument is the database id (primary key) for the model.

We now have a reference for the promise to fetch data fron the server. To read the data, we must resolve the promise to
an object representing the data

2.7. Server/client communication 101

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

modelPromise.then((data) => {
logging.info('This is the model data: ', data);

});

The fetchModel method returns a Promise which resolves when the data has been successfully retrieved. This may
have been due to a round trip call to the REST API, or, if the data has already been previously returned, then it will
skip the call to the REST API and return a cached copy of the data.

If it is important to get data that has not been cached, you can call the fetchModel method with a force parameter

ContentNodeResource.fetchModel(id, { force: true }).then((data) => {
logging.info('This is definitely the most up to date model data: ', data);

});

Collections

For particular views on a data table (which could range from ‘show me everything’ to ‘show me all content nodes with
titles starting with “p”’) - Collections are used. Collections are a cached view onto the data table, which are populated
by Models - so if a Model that has previously been fetched from the server by a Collection is requested from getModel,
it is already cachced.

// corresponds to /api/content/contentnode/?popular=1
const collectionPromise = ContentNodeResource.fetchCollection({ getParams: { popular: 1 }
→˓ });

The getParams option defines the GET parameters that are used to define the filters to be applied to the data and hence
the subset of the data that the Collection represents.

We now have a reference for the promise to fetch data fron the server. To read the data, we must resolve the promise to
an array of the returned data objects

collectionPromise.then((dataArray) => {
logging.info('This is the model data: ', dataArray);

});

The fetchCollection method returns a Promise which resolves when the data has been successfully retrieved. This
may have been due to a round trip call to the REST API, or, if the data has already been previously returned, then it
will skip the call to the REST API and return a cached copy of the data.

If it is important to get data that has not been cached, you can call the fetch method with a force parameter

ContentNodeResource.fetchCollection({ getParams: { popular: 1 }, force: true }).
→˓then((dataArray) => {
logging.info('This is the model data: ', dataArray);

});

102 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.7.3 Data flow

2.8 Development workflow

2.8.1 Git workflow

At a high level, we follow the ‘Gitflow’ model. Some helpful references:

• Atlassian tutorial

• Original description

2.8.2 Pull requests

Submissions

Be sure to follow the instructions shown in the Github PR template when you create a new PR.

In particular, please use the labels “Needs review”, “Work in progress”, and “Needs updates” mutually exclusively to
communicate the state of the PR.

Developers maintain their own clones of the Learning Equality Kolibri repo in their personal Github accounts, and
submit pull requests back to the LE repo.

Every pull request will require some combination of manual testing, code review, automated tests, gherkin stories, and
UI design review. Developers must fully test their own code before requesting a review, and then closely follow the
template and checklist that appears in the PR description. All automated tests must pass.

Unit tests and gherkin stories should be written to ensure coverage of critical, brittle, complicated, or otherwise risky
paths through the code and user experience. Intentional, thoughtful coverage of these critical paths is more important
than global percentage of code covered.

Try to keep PRs as self-contained as possible. The bigger the PR, the more challenging it is to review, and the more
likely that merging will be blocked by various issues. If your PR is not being reviewed in a timely manner, reach out to
stakeholders and politely remind them that you’re waiting for a review.

Some additional guidelines:

• Submitters should fully test their code before asking for a review

• If the PR is languishing, feel free to prod team members for review

• Try to keep the PR up-to-date with the target branch

• Make sure to use the checkboxes in the PR template

2.8. Development workflow 103

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow/
http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/learningequality/kolibri/blob/develop/.github/PULL_REQUEST_TEMPLATE.md
https://github.com/learningequality/kolibri/compare
https://github.com/learningequality/kolibri/
https://help.github.com/articles/creating-a-pull-request/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Git history

Within the Kolibri repo, we have the following primary rule:

Never rewrite history on shared branches.

History has been rewritten if a force push is required to update the remote. This will occur from e.g. amending commits,
squashing commits, and rebasing a branch.

Some additional git history guidance:

• Be encouraged to rewrite history on personal branches so that your git commits tell a story

• Avoid noisy, meaningless commits such as “fixed typo”. Squash these prior to submitting a PR

• When possible, make each commit a self-contained change that plays nicely with git bisect

• Once a PR code review has occurred, avoid squashing subsequent changes as this makes it impossible to see
what changes were made since the code review

• Don’t worry too much about a “clean” commit history. It’s better to have some messy commits than to waste an
hour than debugging a rebase-gone-wrong

Code Reviews

When reviewing PRs, keep feedback focused on critical changes. Lengthy conversations should be moved to a real-time
chat when possible. Be polite, respectful, and constructive. We highly recommend following the guidance in this blog
post.

Some general guidelines:

• Reviewers should actually run and test the PR

• When giving opinions, clarify whether the comment is meant to be a “blocking” comment or if it is just a
conversation

• Pre-existing issues or other cleanup suggestions are can be opened as new issues, or mentioned as “non-blocking”
comments

• Code formatting comments should be rare because we use Prettier and Black

Finally, if you see a very trivial but important necessary change, the reviewer can commit the change directly to a pull
request branch. This can greatly speed up the process of getting a PR merged. Pushing commits to a submitter’s branch
should only be done for non-controversial changes or with the submitter’s permission.

Note: When pushing to another user’s branch, you may get an error like:

Authentication required: You must have push access to verify locks

This is due to a Git LFS bug. Try disabling lock verification using the lfs.[remote].locksverify setting, or simply
running rm -rf .git/hooks/pre-push.

Note: Remember to keep the “Needs review”, “Work in progress”, and “Needs updates” mutually exclusive and
up-to-date.

104 Chapter 2. Table of contents

https://medium.freecodecamp.org/unlearning-toxic-behaviors-in-a-code-review-culture-b7c295452a3c
https://medium.freecodecamp.org/unlearning-toxic-behaviors-in-a-code-review-culture-b7c295452a3c
https://help.github.com/en/articles/committing-changes-to-a-pull-request-branch-created-from-a-fork
https://help.github.com/en/articles/committing-changes-to-a-pull-request-branch-created-from-a-fork
https://github.com/git-lfs/git-lfs/issues/2291
https://github.com/git-lfs/git-lfs/blob/master/docs/man/git-lfs-config.5.ronn#other-settings

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Merging PRs

Who should merge PRs, and when?

First, all automated checks need to pass before merging. Then. . .

• If there is just one reviewer and they approve the changes, the reviewer should merge the PR immediately

• If there are multiple reviewers or stakeholders, the last one to approve can merge

• The reviewer might approve the PR, but also request minor changes such as a typo fix or variable name update.
The submitter can then make the change and merge it themselves, with the understanding that the new changes
will be limited in scope

• Stale reviews should be dismissed by the PR submitter when the feedback has been addressed

Copyright and licensing

The project as a whole is released under the MIT license, and copyright on its code is held by multiple parties including
Learning Equality.

Individual files, such as code copied in from other projects may be under a different license, if that license is compatible.

Similarly, files from Kolibri may end up being copied into other projects.

For these reasons, copyright and license data may be listed explicitly at the top of some files. For example:

Copyright 2023 Ann Contributor
SPDX-License-Identifier: MIT

This format is machine readable and complies with the REUSE specification for software licensing.

For files where the license is not explicitly stated, the overall project license applies.

2.8.3 Development phases

We have the following release types:

• Final

– Public releases

– Info: major, minor, patch

– PEP-440: 1.2.3

– Git tag: v1.2.3 on a release branch

• Beta

– Final integration testing, string freeze, and beta release candidates

– High level of risk-aversion in PRs

– Info: major, minor, patch, beta

– PEP-440: 1.2.3b4

– Git tag: v1.2.3-beta4 on a release branch

• Alpha

– Initial testing releases

2.8. Development workflow 105

https://reuse.software/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

– Avoid broken builds in PRs

– Info: major, minor, patch, alpha

– PEP-440: 1.2.3a4

– Git tag: v1.2.3-alpha4 on the develop branch

• Dev

– Feature branches, PRs, or other git commits

– Info: major, minor, patch, commit

– Experimental work is OK

Within the Learning Equality Kolibri repository:

• The develop branch is our current development branch, and the default target for PRs

• Release branches named like release-v1.2.x (for example). This will track all patch releases within the 1.2.x
minor release line. Distinct releases are tracked as tags like v1.2.3

• We sometimes create feature branches for changes that are long-running, collaborative, and disruptive. These
should be kept up-to-date with develop by merging, not rebasing.

If a change needs to be introduced to an older release, target the oldest release branch that we want the change made
in. Then that change will need to be merged into all subsequent releases, one-at-a-time, until it eventually gets back to
develop.

2.8.4 Github labels

We use a wide range of labels to help organize issues and pull requests in the Kolibri repo.

Priority

These are used to sort issues and sometimes PRs by priority if and only if the item is assigned a milestone. Every issue
in a milestone ought to have a priority label.

Only ‘critical’ items are strictly blockers for a release, but typically all important items should be expected to make it
in, too. Priority within a release is generally assigned by a core Learning Equality team member.

• P0 - critical

• P1 - important

• P2 - normal

• P3 - low

Changelog

The changelog label is used on PRs or issues to generate ‘more details’ links in the Release Notes.

106 Chapter 2. Table of contents

https://github.com/learningequality/kolibri/labels

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Work-in-progress

The work-in-progress label is helpful if you have a PR open that’s not ready for review yet.

Development category

Labels prefixed with DEV: are used to help organize issues (and sometimes PRs) by area of responsibility or scope of
domain knowledge necessary.

TODO items

Labels prefixed with TODO: help flag items that need some action before the issue or PR can be fully resolved.

Organizational Tags

Labels prefixed with TAG: are general-purpose, and are used to help organize issues and PRs.

2.9 Build system and workflow

2.9.1 Frequently asked questions

• How does the build system work overall?

The Kolibri Python Package pipeline creates a whl file and triggers every other pipeline. Those
pipelines download the whl (or the .deb, in the pi image’s case) from the associated build in Kolibri
Python Package to build their own installer. See below for more detail.

One key thing to remember: each build is associated with a specific commit. Builds happen as a
Github “check” for each commit, and can be found on the associated commit inside of its “checks”
links - denoted by a green checkmark (or a red X in the case of a failed build).

• How do I access builds for a PR?

The easiest way to do so would be to go through Github. Navigate to the PR page. If it’s an open PR,
the “Checks” section should be salient - one of those checks should be Buildkite’s, and that will take
you to the associated build page.

If it’s a closed PR, click on the “Commits” section. Every commit that has a green checkmark to its
right is a commit that had checks run against it. Find the commit you’re interested in and click on the
checkmark to get the link to the associated build.

If you want one of the installers in a build, click on the link to the build pipeline triggered for that
installer. From that installer build’s page, you should be able to unblock the “Block” step and start
the build of the specified installer. See below for more detail.

• How do I trigger builds that are blocked?

“Block” steps can be unblocked via the Builkite GUI, on the build page. Clicking on the “Block” step
should present you with a confirmation modal, asking if you want to proceed.

Most “secondary” pipelines - installer pipelines - have a “Block” step as their first, so that the build
won’t run unless the parent Kolibri Python Package build is a release.

• How do I access builds for tagged releases?

2.9. Build system and workflow 107

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

The best way to do so is, again, from Github. Navigate to the “Releases” page on Github. On the left
of the Release name, you should see the short-SHA of a Github commit. This short SHA is also a link.
Clicking on it will take you to the Github page for that commit. Underneath the commit message, you
should find a green checkmark (or a red “X” if it didn’t build properly).

Clicking on the symbol should link to the build page you’re looking for.

• How do I find builds for specific tags?

The best way to do so is from Github. Navigate to the “Tags” page on Github. On the left of the Tag
name, you should see the short-SHA of a Github commit. This short SHA is also a link. Clicking on
it will take you to the Github page for that commit. Underneath the commit message, you should find
a green checkmark (or a red “X” if it didn’t build properly). Clicking on the symbol should link to the
build page you’re looking for.

2.9.2 Design goals

The build pipeline currently uses Buildkite as its build system. Buildkite is flexible in that the build queue is hosted on
their servers, while the build agents (the servers that actually run the build scripts) are self hosted.

The design goals of the pipeline in its current iteration are chiefly:

• Continuously integrate authors’ changes into a built package/installer/app (asset)

• Provide timely alerts to all authors of Pull Requests (PRs) and Releases to Kolibri-related projects on Github
(GH)

• Make those assets available to testers and developers

• In the event of a release, make those assets available on the corresponding release page in GH

These goals are described at a high level, and carry some implicit meaning. These implications translated to some
more concrete goals in the pipeline’s most recent iteration:

• For the sake of speed:

– Automatically build as few assets as possible on a per-PR basis.

• For the the sake of convenience:

– Allow for testers/developers to request additional assets without human intervention.

• For the sake of resilience:

– Have more than one build agent, distributed geographically.

There is certainly overlap in those goals. For example, a faster build translates to a more convenient release process for
our release managers, who must ensure that assets build after tagging a release.

2.9.3 Overview of Buildkite

Before describing the current architecture, it might be helpful to provide context by giving an overview of how Buildkite
works.

This entire section will not be describing any of LE’s build pipelines in particular - only how Buildkite manages
pipelines.

Without diving too deep (LINK please visit their official documentation if you’d like more detail), the Buildkite product
has 2 main components, (illustrated on this page (LINK to agent page)):

1. The Buildkite Agent API

108 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2. The Buildkite Agent Daemon

API and vocabulary

The API is hosted on Buildkite servers. It’s primary purpose is to receive build steps in the form of (mostly) YAML,
and distribute them as jobs to Agents.

A step, in this context, is a YAML-formatted instruction - in all of our product repositories, our steps live inside of
.buildkite/pipeline.yml. It’s the serial form of instructions for Buildkite.

A job is the instantiation of a step, or the de-serialized form of a step. They aren’t always running, but are used as
references for the processes involved in running the commands dictated by the step. Jobs are assigned to Agents, and
can run on any of the Agents connected to our account’s Buildkite API.

A build can be considered a container for jobs. After the pipeline.yml file is de-serialized, all jobs are added to a
build before being delegated to an agent.

Apart from the job allocation functionality, Buildkite conveniently provides us with:

• A Webhook server/client

• A web UI

• Ephemeral asset hosting

A pipeline can be thought of as a sort of container for builds (each build must belong to a pipeline), as well as a
housing mechanism for the features described above; those settings can all be configured on a per-pipeline basis.

Here’s a visual of what concept is a property of which:

2.9. Build system and workflow 109

Pipeline_vocab_illustrated.png

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Github integration

The Webhook client functionality is critical, as it allows us to integrate with Github.

Github alerts Buildkite that a new PR, commit, or tag has been created via webhook. This spurs the Buildkite servers
to create a job, instructing the Agent to pull the GH repo and send Buildkite the steps it needs to be carried out.

The step that defines this job cannot not be defined inside of the pipeline.yaml file commited to the repository. This
must be defined on Buildkite’s servers using their web GUI.

Agent

The agent is hosted on LE servers. Some of these servers are physically located in the LE physical office, and others
are physically located in a cloud provider’s server farm.

All of these servers have a Buildkite Agent application installed as a background service. It’s primary purpose is to
receive jobs from the Buildkite API and execute them.

Apart from the obvious authentication components that are required to access the API, the agent provides us with:

• An agent-level hooks system

• The ability to completely self-manage our build environments and secrets

The value of self hosted

Many build systems provide a free tier of hosting. In the best of those cases, you provide them a Docker image that
they then deploy. Your jobs run inside of that image. The mechanism with which secrets (envars and files) are passed
to these systems vary wildly.

We could probably make those systems work if need be. By self hosting, however, we completely control various facets
of the build pipeline:

• Secrets

– Where they live

– How they’re stored or downloaded

– Their form (envar vs JSON file, etc.)

• Complete control of our dependencies, down to the OS/Kernel.

• The ability to invest in the one-time-cost (as opposed to the ongoing cost of cloud-provided hosting) of physical
hardware , customized to our workload.

– “Hybrid Cloud” setups - where the bulk of the workload is on-premises, with some off-premises secondary
workloads.

2.9.4 Learning Equality’s pipelines

There is one pipeline per installer, each is configured to listen to a different GH repository. :

• Kolibri Python Package

– https://github.com/learningequality/kolibri

• Kolibri MacOS

– https://github.com/learningequality/kolibri-installer-mac

110 Chapter 2. Table of contents

https://buildkite.com/docs/agent/v3/hooks
https://github.com/learningequality/kolibri
https://github.com/learningequality/kolibri-installer-mac

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• Kolibri Android Installer

– https://github.com/learningequality/kolibri-installer-android

• Kolibri Debian

– https://github.com/learningequality/kolibri-installer-debian

• Kolibri Windows

– https://github.com/learningequality/kolibri-installer-windows

• Kolibri Raspian Image

– https://github.com/learningequality/pi-gen

This implies a few things:

• A manually triggered build (clicking on the “New Build” button on Buildkite) will pull from a specific repository.

• An automatically triggered build will pull from the same repository, given that the webhook has been set and the
triggers are properly configured

• After pulling the repository, each pipeline assumes that there is a file defining steps in the repository it just
downloaded. By default, it will use .buildkite/pipeline.json. This can be changed, but we don’t do that
in any of our pipelines.

With one exception, each pipeline’s sole concern is to build the asset it is named for, then upload it to the appropriate
destinations. The exception, and the “appropriate destinations”, will be explained below.

Pipeline orchestration

Presently, the Kolibri Python Package Pipeline carries more responsibility than the rest.

Whereas the other pipelines’ responsibilities stop at building and uploading their installer, Kolibri Python Package
acts as the “kick off” point for the other installers. Being the only pipeline listening to the Kolibri repository on Github
for changes, it is the only pipeline triggered by those changes.

After building the .whl and .pex in a single step, the Kolibri Python Package proceeds to trigger the other in-
stallers, most of which rely on the .whl file (The single exception is Kolibri Raspbian Image, which relies on the
.deb installer).

These trigger steps live inside of the Kolibri Python Package, but send metadata to each of the other pipelines and
trigger an entirely new build in each one.

Block steps

These triggered builds are created simultaneously; this does not mean that the jobs belonging to the builds are assigned
simultaneously. The very first thing a new build does is pull the repository and de-serialize the steps living inside the
.buildkite folder.

For non-release builds, each Build’s first step is a “Block” step - this kind of step does not create a job. At this point,
the Build is “finished”. That is, finished for now: the build will progress once user input confirming procession has
been received.

The “finished” signal on the triggered builds report back to the Kolibri Python Package pipeline, indicating it as
“complete” even if no build has been run.

This allows for efficiency: Time won’t be wasted waiting for every single installer to be built for non-release
pipelines. If a developer *wants* one of the other installers, they may navigate to the appropriate pipeline and
unblock the step.

2.9. Build system and workflow 111

https://github.com/learningequality/kolibri-installer-android
https://github.com/learningequality/kolibri-installer-debian
https://github.com/learningequality/kolibri-installer-windows
https://github.com/learningequality/pi-gen
https://buildkite.com/docs/tutorials/getting-started#create-your-first-build
https://buildkite.com/docs/integrations/github#running-builds-on-pull-requests

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Release builds

In the case that this build belongs to a release-tagged Git commit, a few conditions are triggered:

1. The “Upload Release Artifact” step, conditional based on the existence of a Git tag, now exists at the end of the
artifact build steps (Both standard and triggered builds).

2. The Block step at the start of each “child” pipeline, conditional based on the existence of a Git tag, ceases to exist.
This means that all of the triggered builds, in each of the triggered pipelines, will run and generate a artifact. The
longest of these is the Raspbian image.

2.10 Release process

Kolibri releases are tracked in Notion. This page contains:

• A ‘Kolibri releases’ tracker database

• A set of templates in the tracker database for Major/Minor and Final/pre-releases

• Checkslists of release steps

• Additional guidance on performing release steps

We also maintain a small set of release process automation scripts which automate some processes.

2.11 Internationalization

As a platform intended for use around the world, Kolibri has a strong mandate for translation and internationalization.
As such, it has been designed with technologies to enable this built in.

2.11.1 Writing localized strings

For strings in the frontend, we are using Vue-Intl, an in house port of React-intl. Strings are collected during the build
process, and bundled into exported JSON files.

Messages will be discovered for any registered plugins and loaded into the page if that language is set as the Django
language. All language setting for the frontend are based off the current Django language for the HTTP request.

.vue files

Within Kolibri .vue components, messages are defined in the <script> section as attributes of the component defini-
tion:

export default {
name: 'componentName',
$trs: {
msgId1: 'Message text 1',
msgId2: 'Message text 2',

},
};

112 Chapter 2. Table of contents

https://www.notion.so/learningequality/Kolibri-releases-3119700069ff42e984da88ee11fe13a3
https://github.com/learningequality/kolibri-release-utils/
https://www.npmjs.com/package/vue-intl
https://www.npmjs.com/package/react-intl

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

The component names and message IDs should all be camelCase.

User visible strings can be used anywhere in the .vue file using $tr('msgId') (in the template) or this.
$tr('msgId') (in the script).

An example Vue component would then look like this

<template>
<div>
<!-- puts 'Hello world' in paragraph -->
<p>{{ $tr('helloWorld') }}</p>

</div>
</template>

<script>

export default {
name: 'someComponent',
mounted() {
// prints 'Hello world' to console
console.log(this.$trs('helloWorld'));

},
$trs: {
helloWorld: 'Hello world',

},
};

</script>

.js files

In order to translate strings in Javascript source files, the namespace and messages are defined like this:

import { createTranslator } from 'kolibri.utils.i18n';
const name = 'someModule';
const messages = {

helloWorld: 'Hello world',
};
const translator = createTranslator(name, messages);

Then messages are available from the $tr method on the translator object:

console.log(translator.$tr('helloWorld'));

2.11. Internationalization 113

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

common*String modules

A pattern we use in order to avoid having to define the same string across multiple Vue or JS files is to define “common”
strings translator. These common translators are typically used within plugins for strings common to that plugin alone.
However, there is also a “core” set of common strings available to be used throughout the application.

In order to avoid bloating the common modules, we typically will not add a string we are duplicating to a common
module unless it is being used across three or more files.

Common strings modules should typically have a translator created using the createTranslator function in which
strings are defined - these can then be used in the setup function of a component to expose specific strings as functions:

import commonStringsModule from '../common/commonStringsModule';

export default {
name: 'someComponent',
setup() {
const { myCoolString$, stringWithArgument$ } = commonStringsModule;
return {
myCoolString$, stringWithArgument$

};
},

};

<template>
<div>
<p>{{ myCoolString$() }}</p>
<p>{{ stringWithArgument$({ count: 4 }) }}</p>

</div>
</template>

Previously, this has been handled via mixins, which has required this additional complexity in the modules. You may
see modules that include the translator object and the following:

• An exported function that accepts a string and an object - which it then passes to the $tr() function to get
a string from the translator in the module.

• An exported Vue mixin that exposes the exported function as a method. This allows Vue components to use the
mixin and have the exported function to get a translated string readily at hand easily.

ICU message syntax

All frontend translations can be parameterized using ICU message syntax. Additional documentation is available on
crowdin.

This syntax can be used to do things like inject variables, pluralize words, and localize numbers.

Dynamic values are passed into translation strings as named arguments in an object. For example:

export default {
name: 'anothetComponent',
mounted() {
// outputs 'Henry read 2 stories'
console.log(this.$tr('msg', {name: 'Henry', count: 2}));

},
(continues on next page)

114 Chapter 2. Table of contents

https://formatjs.io/docs/core-concepts/icu-syntax
https://support.crowdin.com/icu-message-syntax/
https://support.crowdin.com/icu-message-syntax/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

$trs: {
msg: '{name} read {count} {count, plural, one {story} other {stories}}',

},
};

.py files

For any user-facing strings in python files, we are using standard Django tools (gettext and associated functions).
See the Django i18n documentation for more information.

2.11.2 RTL language support

Kolibri has full support for right-to-left languages, and all functionality should work equally well when displayed in
both LTR and RTL languages.

There are a number of important considerations to take into account with RTL content. Material Design has an excellent
article that covers most important topics at a high level.

Warning: Right-to-left support is broken when running the development server with hot reloading enabled (yarn
run devserver-hot)

Text alignment

Alignment of application text (i.e. text using $tr syntax) is mostly handled “automagically” by the RTLCSS frame-
work. This means that application text should have CSS applied to it as though it is written in English. For example,
if you want the text aligned left for LTR languages and right for RTL, simply use text-align: left. This will be
automatically flipped to text-align: right by the webpack plugin. Since the application is only ever viewed in
one language at a time, RTLCSS can apply these changes to all CSS at once.

On the other hand, alignment of user-generated text (from databases or from content) is inherently unknown before-
hand. Therefore all user-generated text must have dir="auto" set on a parent DOM node. This can get especially
complicated when LTR and RTL content are mixed inline bidirectionally. Read more about the Unicode Bidirectional
algorithm.

A rule of thumb for inline bidirectional text:

• if user-generated text is on its own in a block-level DOM element, it should be aligned based on the text’s language
using dir="auto" on the block-level element.

• if user-generated text is displayed inline with application text (such as “App Label: user text”), it should be
aligned using CSS text-align on the block-level element, and dir="auto" on a span wrapping the inline
user text.

2.11. Internationalization 115

https://docs.djangoproject.com/en/1.11/topics/i18n/
https://material.io/design/usability/bidirectionality.html
https://material.io/design/usability/bidirectionality.html
https://rtlcss.com/
https://rtlcss.com/
https://www.w3.org/International/articles/inline-bidi-markup/
https://www.w3.org/International/articles/inline-bidi-markup/uba-basics
https://www.w3.org/International/articles/inline-bidi-markup/uba-basics

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Behavior

Occasionally it is necessary to perform different logic depending on the directionalty of the the currently-selected
language. For example, the handling of a button that changes horizontal scroll position would need to flip direction.

In the frontend, we provide a isRtl property attached to every Vue instance. For example, you could write Vue
methods like:

previous() {
if (this.isRtl) this.scrollRight();
else this.scrollLeft();

},
next() {
if (this.isRtl) this.scrollLeft();
else this.scrollRight();

},

If you need to get the current language directionality on the backend, you can use django.utils.translation.
get_language_bidi.

Iconography

Choosing whether or not to mirror icons in RTL languages is a subtle decision. Some icons should be flipped, but not
others. From the Material guidelines:

anything that relates to time should be depicted as moving from right to left. For example, forward points
to the left, and backwards points to the right

It is recommended to use the KIcon component when possible, as this will handle RTL flipping for you and apply it
when appropriate, as well as taking care of other details:

<KIcon icon="forward" />

If KIcon does not have the icon you need or is not usable for some reason, we also provide a global CSS class rtl-icon
which will flip the icon. This can be applied conditionally with the isRtl property, e.g.:

Content rendererers

User interfaces that are tightly coupled to embedded content, such as the ‘next page’ and ‘previous page’ buttons in a
book, need to be flipped to match the language direction of that content. UIs that are not tightly integrated with the
content should match the overall application language, not the content.

Information about content language direction is available in the computed props contentDirection and
contentIsRtl from kolibri.coreVue.mixins.contentRendererMixin. These can be used to change styling
and directionality dynamically, similar to the application-wide isRtl value.

In situations where we are using third-party libraries it might be necessary to flip the entire content renderer UI au-
tomatically using the RTLCSS framework rather than make targeted changes to the DOM. To handle these cases, it’s
possible to dynamically load the correct CSS webpack bundle using a promise:

export default {
name: 'SomeContentRenderer',
created() {

(continues on next page)

116 Chapter 2. Table of contents

https://google.github.io/material-design-icons/#icons-in-rtl

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

(continued from previous page)

// load alternate CSS
this.cssPromise = this.$options.contentModule.loadDirectionalCSS(this.

→˓contentDirection);
},
mounted() {
this.cssPromise.then(() => {
// initialize third-party library when the vue is mounted AND the CSS is loaded

});
},

};

2.11.3 Crowdin workflow

We use the Crowdin platform to enable third parties to translate the strings in our application.

Note that you have to specify branch names for most commands.

Note: These notes are only for the Kolibri application. For translation of user documentation, please see the kolibri-
docs repository.

Note: The Kolibri Crowdin workflow relies on the project having the “Duplicate strings” setting set to “Show – trans-
lators will translate each instance separately”. If this is not set, the workflow will not function as expected!

Prerequisites

The tooling requires a minimum Python version of 3.7 and the dependencies in requirements/fonts.txt installed.

You’ll need to have GNU gettext available on your path. You may be able to install it using your system’s package
manager.

Note: If you install gettext on Mac with Homebrew, you may need to add the binary to your path manually

Finally, ensure you have an environment variable CROWDIN_API_KEY. You can generate your Crowdin API key by
navigating to your Crowdin account settings page.

Extracting and uploading sources

Typically, strings will be uploaded when a new release branch is cut from develop, signifying the beginning of string
freeze and the beta releases. (See Release process.)

Before translators can begin working on the strings in our application, they need to be uploaded to Crowdin. Translations
are maintained in release branches on Crowdin in the Crowdin kolibri project.

This command will extract front- and backend strings and upload them to Crowdin, and may take a while:

make i18n-upload branch=[release-branch-name]

The branch name will typically look something like: release-v0.8.x

2.11. Internationalization 117

https://github.com/learningequality/kolibri-docs/
https://github.com/learningequality/kolibri-docs/
https://crowdin.com/settings#account
http://crowdin.com/project/kolibri

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Pre-translation

After running the i18n-upload command above, the newly created branch should have some percentage of strings in
supported languages shown as both translated and approved. These strings are the exact matches from the previous
release, meaning that both the string IDs and the English text is exactly the same.

At this point, it is often desirable to apply some form of pre-translation to the remaining strings using Crowdin’s
“translation memory” functionality. There are two ways to do this: with and without auto-approval.

To run pre-translation without auto-approval (recommended):

make i18n-pretranslate branch=[release-branch-name]

Or to run pre-translation with auto-approval:

make i18n-pretranslate-approve-all branch=[release-branch-name]

Warning: The exact behavior of Crowdin’s translation memory is not specified. Given some English phrase, it
is not always possible to predict what suggested translation it will make. Therefore, auto-approval be used with
caution.

Transferring screenshots

Every release, we need to transfer screenshots on the platform from the previous branch to the new branch, as this is
the only way to persist screenshots across branches. To do this run:

make i18n-transfer-screenshots branch=[release-branch-name] source=[previous-release-
→˓branch-name]

This will match all screenshots by their Kolibri message ID to persist screenshots across releases.

Reviewing screenshots

Every release, we need to review screenshots on the platform to ensure they are up to date. To generate a report of all
the screenshots for a particular branch run:

make i18n-screenshot-report branch=[release-branch-name]

This will generate an HTML report that can be browsed to double check screenshots against the source English strings,
with a link to the string on Crowdin to update the screenshot if needed.

Downloading translations to Kolibri

As translators work on Crowdin, we will periodically retrieve the latest updates and commit them to Kolibri’s codebase.
In the process, we’ll also update the custom fonts that are generated based on the translated application text.

First, you need to download source fonts from Google. In order to do this, run:

make i18n-download-source-fonts

Next, we download the latest translations from Crowdin and rebuild a number of dependent files which will be checked
in to git. Do this using the command below. It can take a long time!

118 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

make i18n-download branch=[release-branch-name]

This will do a number of things for you:

• Rebuild the crowdin project (note that builds can only happen once every 30 minutes, as per the Crowdin API)

• Download and update all translations for the currently supported languages

• Run Django’s compilemessages command

• Regenerate all font and css files

• Regenerate Intl JS files

Check in all the updated files to git and submit them in a PR to the release branch.

Note: Remember about Perseus! Check if files in that repo have changed too, and submit a separate PR. It will be
necessary to release a new version and referencing it in Kolibri’s base.txt requirements file.

2.11.4 Adding a newly supported language

In order to add a new language to Kolibri, the appropriate language information object must be added to the array in
kolibri/locale/language_info.json.

Warning: Always test a newly added language thoroughly because there are many things that can go wrong. At
a minumum, ensure that you can run the development server, switch to the language, and navigate around the app
(including Perseus exercises). Additionally, ensure that the fonts are rendered with Noto.

The language must be described using the following keys, with everything in lower case

{
"crowdin_code": "[Code used to refer to the language on Crowdin]",
"intl_code": "[Lowercase code from Intl.js]",
"language_name": "[Language name in the target language]",
"english_name": "[Language name in English]",
"default_font": "[Name of the primary Noto font]"

}

• For crowdin_code, see Crowdin language codes.

• For intl_code, see Supported Intl language codes and make it lowercase.

• For language_name and english_name, refer to the ISO 639 codes. If necessary, use this backup reference.
If the language is a dialect specific to a region, include the name of the region in parentheses after the language
name.

• For the default_font, we use variants of Noto Sans. Search the Noto database to see which font supports the
language you are adding.

If the language doesn’t exist in Django, you may get errors when trying to view the language. In this case it needs to
be added to EXTRA_LANG_INFO in base.py.

For the new language to work, the django.mo files for the language must also be generated by running make
i18n-download and committed to the repo.

2.11. Internationalization 119

https://developers.google.com/web/updates/2013/09/DevTools-answers-What-font-is-that
https://support.crowdin.com/api/language-codes/
https://github.com/andyearnshaw/Intl.js/tree/master/locale-data/jsonp
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://helpsharepointvision.nevron.com/Culture_Table.html
https://www.google.com/get/noto/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

To test unsupported languages, you can use the Deployment section LANGUAGES option in the Kolibri options.ini.
Either set the value to all to activate all languages, or add the specific Intl language code as the value.

Once the language has been fully translated and is ready for use in Kolibri, its Intl language code must be added to the
KOLIBRI_SUPPORTED_LANGUAGES list in kolibri/utils/i18n.py.

Updating font files

We pin our font source files to a particular commit in the Google Noto Fonts github repo.

Google occasionally adds new font files and updates existing ones based on feedback from the community. They’re
also in the process of converting older-style fonts to their “Phase III” fonts, which are better for us because they can be
merged together.

In order to update the version of the repo that we’re using to the latest HEAD, run:

python packages/kolibri-tools/lib/i18n/fonts.py update-font-manifest

You can also specify a particular git hash or tag:

python packages/kolibri-tools/lib/i18n/fonts.py update-font-manifest [commit hash]

Make sure to test re-generating font files after updating the sources.

Note: We attempt to download fonts from the repo. It is possible that the structure of this repo will change over time,
and the download script might need to be updated after changing which version of the repo we’re pinned to.

2.11.5 Configuring language options

The languages available in an instance of Kolibri can be configured using a few mechanisms including:

• An environment variable (KOLIBRI_LANGUAGES)

• An options.ini file (in LANGUAGES under [Deployment])

• Overwriting the option in a kolibri_plugin.py plugin config file

It takes a comma separated list of intl_code language codes. It can also take these special codes:

• kolibri-supported will include all languages listed in KOLIBRI_SUPPORTED_LANGUAGES

• kolibri-all will include all languages defined in language_info.json

2.11.6 Auditing strings

Much of our string workflow before developer implementation happens using Ditto. In order to do a full audit of newly
added strings from Ditto, a CSV of the newly added strings can be exported from Ditto, and then our internal audit tool
can be run to generate a CSV report of any strings that are potentially missing:

yarn run auditdittostrings --ditto-file <path to Ditto CSV>

This will produce an output CSV file in kolibri/locale/en/LC_MESSAGES/profiles/ditto.csv that contains an audit
report on which strings from the Ditto file that are marked as FINAL were not found in the codebase (using an exact
match method, so this may produce false positives if strings are not in ICU syntax on Ditto), and also any strings

120 Chapter 2. Table of contents

https://github.com/googlei18n/noto-fonts/
https://dittowords.com

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

that have been discovered in the codebase to be an exact match - i.e. when we appear to have duplicate strings in our
codebase (again, these may be false positives, as some strings may be repeated for different senses).

2.12 Manual testing & QA

2.12.1 General Notes

Accessibility (a11y) testing

Inclusive design benefits all users, and we strive to make Kolibri accessible for all. Testing for accessibility can be
challenging, but there are a few features you should check for before submitting your PR:

• Working keyboard navigation - everything that user can do with mouse or by touch must also work with the
keyboard alone.

• Sufficient color contrast between foreground text/elements and the background.

• Meaningful text alternative for all non-decorative images, or an empty ALT attribute in case of decorative ones.

• Meaningful labels on ALL form or button elements.

• Page has one main heading (H1) and consecutive lower heading levels.

Please also visit the Recommended A11y tools section of the manual testing documentation

Cross-browser and OS testing

It’s vital to ensure that our app works across a wide range of browsers and operating systems, particularly older versions
of Windows and Android that are common on old and cheap devices.

In particular, we want to ensure that Kolibri runs on major browsers that match any of the following criteria:

• within the last two versions

• IE 11+

• has at least 1% of global usage stats

Here are some useful options, in order of simplicity:

BrowserStack

BrowserStack is an incredibly useful tool for cross-browser and OS testing. In particular, it’s easy to install plugin
which forwards localhost to a VM running on their servers, which in turn is displayed in your browser.

Amazon Workspaces

In some situations, simply having a browser is not enough. For example, a developer may need to test Windows-specific
backend or installer code from another OS. In many situations, a virtual machine is appropriate - however these can be
slow to download and run.

Amazon’s AWS Workspaces provides a faster alternative. They run Windows VMs in their cloud, and developers can
RDP in.

2.12. Manual testing & QA 121

http://webaim.org/techniques/keyboard/
http://a11yproject.com/posts/what-is-color-contrast/
http://accessibility.psu.edu/forms/
http://accessiblehtmlheadings.com/
http://browserl.ist/?q=%3E+1%25%2C+last+2+versions%2C+ie+%3E%3D+9%2C+Firefox+ESR
https://www.browserstack.com/
https://aws.amazon.com/workspaces/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Local Virtual Machines

Workspaces is very useful, but it has limitations: only a small range of OSes are available, and connectivity and
provisioning are required.

An alternative is to run the guest operating system inside a virtual machine using e.g. VirtualBox. This also gives more
developer flexibility, including e.g. shared directories between the guest and host systems.

There is also a Testing with Virtual Machines section, which we hope will help you to use virtual machines.

Hardware

There are some situations where actual hardware is necessary to test the application. This is particularly true when
virtualization might prohibit or impede testing features, such as lower-level driver interactions.

Responsiveness to varying screen sizes

We want to ensure that the app looks and behaves reasonably across a wide range of typical screen sizes, from small
tablets to large, HD monitors. It is highly recommended to constantly be testing functionality at a range of sizes.

Chrome and Firefox’s Developer Tools both have some excellent functionality to simulate arbitrary screen resolutions.

Slow network connections

It’s important to simulate end-users network conditions. This will help identify real-world performance issues that may
not be apparent on local development machines.

Chrome’s Developer Tools have functionality to simulate a variety of network connections, including Edge, 3G, and
even offline. An app can be loaded into multiple tabs, each with its own custom network connectivity profile. This will
not affect traffic to other tabs.

Within the Chrome Dev Tools, navigate to the Network panel. Select a connection from the drop-down to apply network
throttling and latency manipulation. When a Throttle is enabled the panel indicator will show a warning icon. This is
to remind you that throttling is enabled when you are in other panels.

For Kolibri, our target audience’s network condition can be mimicked by setting connectivity to Regular 3G (100ms,
750kb/s, 250 kb/s).

Performance testing with Django Debug Panel

We have built in support for Django Debug Panel (a Chrome extension that allows tracking of AJAX requests to Django).

To use this, ensure that you have development dependencies installed, and install the Django Debug Panel Chrome
Extension. You can then run the development or production servers with the following environment variable set:

DJANGO_SETTINGS_MODULE=kolibri.deployment.default.settings.debug_panel

This will activate the debug panel, and will display in the Dev tools panel of Chrome. This panel will track all page
loads and API requests. However, all data bootstrapping into the template will be disabled, as our data bootstrapping
prevents the page load request from being profiled, and also does not profile the bootstrapped API requests.

122 Chapter 2. Table of contents

https://www.virtualbox.org/wiki/Downloads
https://chrome.google.com/webstore/detail/django-debug-panel/nbiajhhibgfgkjegbnflpdccejocmbbn
https://chrome.google.com/webstore/detail/django-debug-panel/nbiajhhibgfgkjegbnflpdccejocmbbn

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Generating user data

For manual testing, it is sometimes helpful to have generated user data, particularly for Coach and Admin facing func-
tionality.

In order to do this, a management command is available

kolibri manage generateuserdata

This will generate user data for each channel on the system. To see available options, use

kolibri manage help generateuserdata

Examples for Kolibri with imported channels

The command kolibri manage generateuserdata (without any arguments) creates 1 facility, with 2 classes, and
20 users each class. It will then create sample data up to maximum of 2 channels. Then it will create 5 lessons per
class, 2 exams, and randomize the number of interactions per channel for learners.

Create 2 facilities, with 2 classes per facility, with 20 learners per class.

kolibri manage generateuserdata --facilities 2 --classes 2 --users 20

Same as above, but prepend their names with “VM1” - useful for testing P2P syncing features.

kolibri manage generateuserdata --facilities 2 --classes 2 --users 20 --device-name VM1

Create 2 facilities, with 2 classes per facility, with 20 learners per class, 2 interactions per learner.

kolibri manage generateuserdata --facilities 2 --classes 2 --users 20 --num-content-
→˓items 2

Examples for a fresh Kolibri install (no imported channels)

For a fresh Kolibri installation, use this to automatically create superusers and skip on-boarding (setup wizard). The
superuser username is superuser and password is password.

kolibri manage generateuserdata --no-onboarding

Create 2 facilities, with 2 classes per facility, with 20 learners per class.

kolibri manage generateuserdata --facilities 2 --classes 2 --users 20 --no-onboarding

2.12. Manual testing & QA 123

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Notes

1. If there are existing facilities, it will only create the remaining ones. So if you already have one facility, specifying
--facilities 2 will create one more facility and its subsequent sample data.

2. Use the –max-channels option to limit the number of channels for learners to interact with. This saves a lot of
time specially on large data samples.

3. The --no-onboarding argument creates a super user for each facility with username superuser and password
password.

Collecting client and server errors using Sentry

Sentry clients are available for both backend and frontend error reporting. This can be particularly useful to have
running on beta and demo servers in order to catch errors “in the wild”.

This behaviour is activated by installing the Kolibri Sentry Plugin. Once installed, the options below become available
for configuration.

pip install kolibri-sentry-plugin # might need to run with sudo

If you’re running Kolibri using a pex file, you’ll need to make sure that the pex inherits a Python path with
kolibri_sentry_plugin available. To do this without inheriting the full system path, run the pex from an active vir-
tual environment with PEX_INHERIT_PATH=1 python kolibri.pex.

To set up error reporting, you’ll need a Sentry DSN. These are available from your project settings at https://
sentry.io/settings/[org_name]/[project_name]/keys/

You can set these either in options.ini or as environment variables.

If using options.ini, under a Debug header you can use these options:

• SENTRY_BACKEND_DSN

• SENTRY_FRONTEND_DSN

• SENTRY_ENVIRONMENT (optional)

Or if using environment variables:

• KOLIBRI_DEBUG_SENTRY_BACKEND_DSN

• KOLIBRI_DEBUG_SENTRY_FRONTEND_DSN

• KOLIBRI_DEBUG_SENTRY_ENVIRONMENT (optional)

The ‘environment’ corresponds to a particular installation of Kolibri that we want to track over time - for example,
demo-server, beta-server, or i18n-server.

Other information is provided automatically such as the current user, browser info, and locale.

124 Chapter 2. Table of contents

https://docs.sentry.io/
https://github.com/learningequality/kolibri-sentry-plugin
https://docs.sentry.io/error-reporting/quickstart

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.12.2 Testing with Virtual Machines

Install VirtualBox

Linux

Download and follow the installation instructions from here: https://www.virtualbox.org/wiki/Linux_Downloads

Windows

Download and follow the Windows installation instructions.

Macintosh

Download and follow the Mac installation instructions.

Install VirtualBox Extension Pack

Independently from which OS you use as host, you need to install the same VB Extension Pack to enable support for
USB 2 & 3 devices and other features.

1. Download the VirtualBox Extension Pack.

2. Go to File - Preferences - Extensions in the VirtualBox main menu.

3. Load the extension file in the pane on the right and close the Preferences.

2.12. Manual testing & QA 125

https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/manual/ch02.html#installation_windows
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/manual/ch02.html#installation-mac
http://download.virtualbox.org/virtualbox/5.1.26/Oracle_VM_VirtualBox_Extension_Pack-5.1.26-117224.vbox-extpack

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Kolibri releases

Download the latest Kolibri release installers from GitHub: https://github.com/learningequality/kolibri/releases/latest

Tip: Make a Shared folder for installers and content

Designate one folder on your host OS where you will save all the installers needed for testing in various virtual machines.
You could also have save additional installers as browsers (Mozilla Firefox & Google Chrome). After you install
VirtualBox and import virtual machines, you will configure each one to share (see) that folder on your host OS as a
network folder.

126 Chapter 2. Table of contents

https://github.com/learningequality/kolibri/releases/latest

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Test Kolibri in Windows guest

Contents

• Test Kolibri in Windows guest

– Download virtual machine images

– Import VM image into VirtualBox

– Configure virtual machines for testing

– Start Virtual Machine

– Recommendations for VM tuning prior to Kolibri installation

∗ Disable Windows Update and Modules installer

– Install additional browsers - Mozilla Firefox & Google Chrome

∗ Recommended addons/extensions

– Install Kolibri

∗ Download minimal content

Download virtual machine images

We use Modern IE virtual machine images. Choose the virtual machine (VM) image you wish to test according to your
host OS and download them to your computer.

1. Select Windows version virtual machine

2. Select VirtualBox platform

2.12. Manual testing & QA 127

https://dev.windows.com/en-us/microsoft-edge/tools/vms/windows/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Note: We do not support Internet Explorer 10 or below, so make sure to download the VM image with IE11 or above.

Import VM image into VirtualBox

Extract the contents of downloaded .zip file to obtain the corresponding VM image file with .ova extension.

Double-click the .ova file to import the VM into VirtualBox. You can change some options in the Import window, but
it’s best if you leave the default values and setup everything in the VirtualBox Settings once VM is already imported.

Configure virtual machines for testing

You can have several VMs imported in the VirtualBox Manager Window. Select the VM you want to use for testing
and press the Settings button to start the configuration:

128 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

1. Select the General pane and go to Advanced tab:

In the Shared Clipboard and Drag’n’Drop drop-down menus select *Bidirectional* - this will allow you to
use Copy & Paste functions between the VM and your host OS (very useful for copying code and error outputs
back and forth! ;)

2.12. Manual testing & QA 129

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2. Select the System pane: In the Motherboard tab allocate as much RAM as your OS can spare to VM’s Base
Memory with the slider:

In the Processor tab allocate as many CPU’s as your OS can spare to VM’s Processor(s) with the slider:

130 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

3. In the Shared Folders pane add the folder you created previously where you keep Kolibri and other installers on
your host machine that you want to make available for virtual machines.

4. Press the OK button to save all the changes and close the *Settings* window.

At this point your virtual machine is ready so you can start it and unleash the tester in you!

2.12. Manual testing & QA 131

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Start Virtual Machine

Press the green arrow button to start the selected VM.

Recommendations for VM tuning prior to Kolibri installation

Manual testing is not a complex process, it usually involves a repetition of predetermined steps in a given testing scenario
and recording the results, but it can be time consuming. Unless you are working with VirtualBox on a powerful host
computer, VM will run more slowly. The following list of actions to take will help you tune the VM and make it as
fast as possible. Apart from allocating as much RAM and processor power as your host OS can spare, you should also
perform the following steps:

Disable Windows Update and Modules installer

Modern.ie VMs will come with Windows Update enabled and active by default just as any regular OS. Downloading
and installing the updates will require time and occupy VM resources, which will slow down your testing process.
Since it is unlikely that Kolibri installation will be somehow affected by VM without the latest Microsoft patches, you
should disable Windows Update altogether.

1. Go to Control Panel > Windows Update > Change settings and select Never check for updates from the drop
down menu. Press the OK button to save the selection.

132 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2. Unfortunately, previous step does not seem to be quite enough, so the fastest solution is to stop the two culprit
services altogether. Go to Control Panel > Administrative Tools > Services, locate the Windows Update and
Windows Modules Installer services on the list and right-click on each to open their Properties window:

a) Press the Stop button in the Properties window to stop the service.

b) Select Manual from the Startup type drop down menu.

Beware not to select Disabled as it may hinder the installation of Python.

2.12. Manual testing & QA 133

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

c) Press buttons Apply and OK.

3. Restart the VM. This way both Windows Update and Windows Modules Installer services will not hog the
resources on your VM anymore and testing will be much faster!

Install additional browsers - Mozilla Firefox & Google Chrome

Tip: Keep downloaded browser installers in the same folder designated as Shared with your VMs

Apart from Internet Explorer that comes by default with Windows, you should test Kolibri on other browsers like
Firefox and Chrome.

It is also recommended that you install basic FF addons & Chrome extensions that will help you work faster and collect
better information.

134 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Recommended addons/extensions

TODO

Install Kolibri

Tip: Make a “baseline” snapshot of your VM prior to installing Kolibri the first time

After you’ve tuned and optimized your VM and installed browsers, make one Snapshot before you install Kolibri. This
will be your baseline VM snapshot upon which you will install each Kolibri version and restore to it to install the next
one.

2.12. Manual testing & QA 135

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Download minimal content

1. Download this small testing channel, or others:

• nakav-mafak - Kolibri QA Channel (~250MB)

2. Use the following command to create Kolibri users for testing.

kolibri manage generateuserdata

command to create Kolibri users for testing.

3. Login as Coach user and create groups and exams as those are not (yet) available through the previous automatic
command.

4. Happy testing!.

Note: When you finish testing one particular release, save it as a VM Snapshot so you can revert to it if necessary.

The goal is to have baseline snapshots for the initial (system “ready”) state, and new ones for successive test cases.
Since we are in early development phase, you will not have a lot of upgrade scenarios that I used to have while testing
KA Lite:

136 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Tip: Delete unnecessary snapshots because they can occupy a lot of disc space over time.

Use the recommended format for filing Issues on GitHub.

Use browser debugging tools and screenshots to better illustrate the problem.

Test Kolibri in Linux guest

Download virtual machine images

You can download the ISO image and install any Linux distro the usual way, but ready-to-use images to save time
it is recommended to and. Choose the virtual machine (VM) image you wish to test according to your host OS and
download them to your computer.

1. Select Ubuntu version

2. Select VirtualBox platform

3. Select

2.12. Manual testing & QA 137

https://github.com/learningequality/kolibri/issues/new

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Import and configure Ubuntu VM image into VirtualBox

1. Extract the contents of downloaded .7z file to obtain the corresponding VM image file with .vdi extension.

2. Open VirtualBox click on New button.

3. Type OS Name, select OS Type and click Next.

138 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

4. Set available RAM.

5. Select Use an existing virtual hard drive file, browse to where VDI image is located.

2.12. Manual testing & QA 139

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

6. Click on Settings and amplify video memory for VM, and Enable 3D Acceleration.

7. In the Shared Folders pane add the folder you created previously where you keep Kolibri and other installers on
your host machine that you want to make available for virtual machines.

140 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

8. Start the newly imported VM.

9. Open Devices menu and select Insert Guest Additions CD image. . . option.

2.12. Manual testing & QA 141

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

142 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

10. Add your Ubuntu user in vboxsf group to access VirtualBox shared folder in Ubuntu guest. Open Terminal and
run:

sudo adduser <username> vboxsf

11. Reboot and you’ll be able to find and open the folder shared in VirtualBox Settings, under the Network in Ubuntu
guest.

12. Happy testing!

Test Kolibri in OSX guest

Coming soon!

2.12.3 Testing Kolibri with app plugin enabled

The Kolibri app plugin

The Kolibri app plugin is designed to provide features and behavior with the mobile app user in mind. In order to test
or develop Kolibri in this mode, there are commands that can be used to initialize Kolibri as needed.

By running the command: yarn app-python-devserver you will start Kolibri in development mode. You can also run
yarn app-devserver to run the frontend devserver in parallel.

When you start the server with these commands, you will see a message with a URL pointing to
http://127.0.0.1:8000/app/api/initialize/<some token> - visiting this URL will set your browser so that it can inter-
act with Kolibri as it runs with the app plugin. You will only have to do this once unless you clear your browser
storage.

2.12.4 Recommended A11y tools

Style Guides

A11Y Style Guide

Living style guide, generated from KSS documented styles. . .with an accessibility twist.

Firefox Add-ons

WAVE Web Accessibility Extension

When activated, the WAVE extension injects icons and indicators into your page to give feedback about accessibility
and to facilitate manual evaluation.

2.12. Manual testing & QA 143

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

aXe Accessibility Engine

Open-source accessibility testing tool by Deque.

WCAG Contrast checker

Very complete sidebar contrast checker, on top of which is provided a filter to simulate 4 types of colorblindness.

Chrome Extensions

WAVE Evaluation Tool

Web accessibility evaluation tool developed by WebAIM.org.

Accessibility Developer Tools

Adds an Accessibility audit and an Accessibility sidebar pane to the Elements tab of your Chrome Developer Tools.

aXe Accessibility Engine

Open-source accessibility testing tool by Deque.

Accessibility monitor

Continuously monitor accessibility failures in a page as it’s being used, rather than a single audit on page load.

NoCoffee vision simulator

Evaluation tool helpful for understanding several vision problems and deficiencies.

Spectrum

Evaluation tool for different types of color vision deficiency.

WCAG Luminosity Contrast Ratio Analyzer

Pick colors, compute contrast, get suggestions & preview with challenged visions.

144 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Bookmarklets/Favelets (browser independent)

tota11y - an accessibility visualization toolkit

Helps visualize the most common accessibility violations (and successes).

HTML_CodeSniffer

Detects violations of both Web Content Accessibility Guidelines (WCAG) 2.0 (all three conformance levels), and the
web-related components of the U.S. “Section 508” legislation.

Visual ARIA Bookmarklet

Allows any sighted person to physically see the use of ARIA on public websites.

Jim Thatcher’s Favelets

Several handy a11y assessment favelets/bookmarklets.

Color Contrast tools

Contrast Ratio

By Lea Verou.

Accessibility Color Wheel

Find an accessible color pair and compare contrast with simulation of three types of color deficiency: deuteranopia,
protanopia and tritanopia.

Color Safe

Accessible color palettes based on WCAG Guidelines of text and background contrast ratios.

Color Palette Accessibility Evaluator

Online tool for analyzing color combinations that meet WCAG 2 a11y specifications.

2.12. Manual testing & QA 145

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Contrast Analyzer

Standalone tool; provides a pass/fail check for WCAG 2.0 contrast criteria; simulates certain visual conditions.

Online A11y validation tools

AChecker

Full HTML, CSS, WCAG & Section 508 online assessment tool.

Functional Accessibility Evaluator 2.0

Sitewide evaluation and reports (requires registration).

Cynthia Says

TENON

Automated A11y testing

Choosing an Automated Accessibility Testing Tool: 13 Questions you should ask

axe-core

The Accessibility Engine for automated testing of HTML-based user interfaces.

pa11ly

Requires Node.js and PhantomJS; Custom Reporters option .

Tanaguru

Very complete website a11y assessment tool; basic and advanced Scenario audits based on Selenium).

2.13 Release Notes

List of the most important changes for each release.

146 Chapter 2. Table of contents

http://www.karlgroves.com/2013/06/28/choosing-an-automated-accessibility-testing-tool-13-questions-you-should-ask/
https://github.com/nature/pa11y#custom-reporters
http://tanaguru.readthedocs.org/en/develop/userdoc-scenario-audit/
http://tanaguru.readthedocs.org/en/develop/userdoc-scenario-audit-advanced/

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.1 0.16.0

Features

Robust syncing of user data and resources

Support for quick learner setup and independent learners

• Kolibri has a new onboarding experience which allows joining a facility, and streamlines getting started as an
independent learner with a rapid “on my own setup” option

• Independent learners can transfer their existing data and learning progress to a facility. ##### Resource discovery

• Assigned lesson and quiz resources are now automatically transferred to learner devices, allowing coaches to
dynamically manage learner content, rather than an administrator needing to import all content devices before
distribution.

• Administrators and independent learners are now able to view other Kolibri Libraries on their local network and
browse their resources, without having to import content. If they are connected to the internet, they will be able
to browse resources on the Kolibri Content Library (hosted on Kolibri Studio).

• Administrators can allow learners to download resources from other Kolibri Libraries to their device to view
within Kolibri, even when they are no longer on the same network. ##### Support for administrators

• Administrators have a new option to add a PIN on learner-only devices, which allows an administrator easy access
to the Device page while preventing learners from inadvertently making changes.

• Administrators are now able to schedule syncing of facility data on a recurring basis at custom intervals.

• When exporting log files, administrators are able to select the date range for the logs. ##### Practice quizzes

• This release supports practice quizzes, which are resources in the format of quizzes that learners can take in
preparation for an assessment. They are able to see their score, and retry as many times as they would like,
independently. Practice quiz resources are available through the Library, or can be assigned as part of a lesson.
The same questions can also be assigned as a coach assigned quiz as a standardized assessment.

Changes

Dev documentation/dev updates

• Updated node version to 18

• Getting started documentation updated

• Updated to Webpack 5

• Created Github actions for build pipeline

• Created Github action to add assets to PRs

• Task API changes have been finalized after initial work in 0.15. Documentation is now updated to describe how
to interact with the API and define tasks in plugins.

2.13. Release Notes 147

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Architectural changes

• There is a new page architecture that is used across all Kolibri plugins, and the component has been removed.
(Selected relevant high level issues and PRs: #9102, #9128, 9134.)

• The Kolibri Process Bus has been updated to support easier composability for custom deployment architectures.

• Conditional promises have been removed.

• To support the new onboarding process for Kolibri, Kolibri apps can now access a capability to provide access
controls based on the currently active operating system user.

API Breaking Changes

• Tasks API has now been finalized, previous methods for interacting with tasks that do not use the pluggable Tasks
API have been removed.

• The drive info endpoint has been moved the into the device app but functionality remains the same

• The API for coordinating learner only device synchronization within a local area network has been updated to
ensure robust and reliable syncing. Any users wishing to use learner only device synchronization must update
all Kolibri devices to this newer version

API Additions (non-breaking changes)

• REST API for enabling and disabling plugins

• Add API endpoint and hook driven capability for UI initiated device restart

• Public signup viewset

• Public content metadata endpoints to support granular resource import

Accessibility improvements

• Landmarks have been added and refined across the Library page and its related subpages, for better accessibility.
This is a first step in support of more robust accessibility support, particularly in terms of page navigation for
screen reader users.

Deprecations

• Support for Python 2.7 will be dropped in the upcoming version, 0.17. Upgrade your Python version to Python
3.6+ to continue working with Kolibri. More recent versions of Python 3 are recommended.

• Support for this Internet Explorer 11 will be dropped in the upcoming version, 0.17. We recommend installing
other browsers, such as Mozilla Firefox or Google Chrome, in order to continue working with Kolibri.

148 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Kolibry Design System upgrades

• Kolibri is now using kolibri-design-system v2.0.0 (a major version upgrade!). Please see the KDS release’s
Github page for documentation and full details about breaking changes and new features.

2.13.2 0.15.12

Added

• Added localization support for Haitian Creole

• Added annotation layer to PDF viewer

Changed

• Updated PID file when the zipcontent server starts

Fixed

• Ensure startremotecontentimport and startdiskcontentimport pass through the fail_on_error op-
tion to the importcontent command

2.13.3 0.15.11

Fixed

• Fixed progress tracking edge case where float rounding issues prevent progress reaching 100%

2.13.4 0.15.10

Added

• Add PDF accessibility support for screen readers

• Add support for captions for audio

Fixed

• Fixed overflowing title alignment on content cards

• Improved visible focus outline

• Fixed positioning of transcript layout when language is set to a right-to-left language

• Fixed calculation for number of users displayed on the User Tables

2.13. Release Notes 149

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Changed

• Only display the completion modal on the finish event when the resource is also complete

2.13.5 0.15.9

Added

• Specified pre-commit hook python version to 3.10

• Added Python3.11 to supported python versions ### Fixed

• Fixed PDF completion issues

• Fixed learner-facing metadata display of content duration

• Fixed “Mark as complete” functionality to allow learners to mark resources as complete when allowed by the
resource

• Disable forward/back buttons on EPUB renderer until locations are properly loaded

• Fix issue that causes learners to skip every other question in an exercise

• Fix searchbox outline

• Fix title spacing in app bar

• Fix bookmark data loading issues that caused inaccurate bookmark display ### Changed

• Changed __init__.py from 5 tuple to 3

• Set a max width on Library main content grid to display properly on extra large monitors

• Remove “All options” from filters in Learn search/filtering side panel

• Switch display of the completion modal to require both completed progress and the resource to be finished

• Add tests to assert totalattempts behaviour

• Display completion modals only on first completion, and allow user to reopen the modal if needed

• Update category search for each level to be searchable

• Update KDS to 1.4.1

2.13.6 0.15.8

Added

• Adds job storage sanity check to ensure that Kolibri will not fail to start if the asynchronous job storage is
malformed

150 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Changed

• Logging: remove unused simple formatter, add asctime to color formatter

• Order resume content display by last interaction

• Upgrade morango and lower default sync chunk size through CLI

• Make learners only appear once in reports when assigned from both groups and individually to lessons and
quizzes.

• Persist collection tokens when switching between individual and bulk import workflows for channels

Fixed

• CSV Endpoint permissions and error handling

• Adds fix for multiple worker processes duplicating jobs.

• Adds translated string for user kind in the user table

• Check for an array’s length to avoid breaking errors

• Fixes Version logic not handling non-tripartite version strings

• Filters out empty nodes, add safety to breaking code

• Prevent controls for the PDF renderer from overlapping content

• Fix quiz completion regression which caused the notification to contain the incorrect score

• height = width in import cards on thumbnail, fix misaligned text

• Update levels to display translated strings, not constant ids

2.13.7 0.15.7

Added

• Integration test gherkin story for automatic device provisioning in https://github.com/learningequality/kolibri/
pull/9587

Fixed

• Add content check guard to library page in https://github.com/learningequality/kolibri/pull/9635

• Resolve issues with running morango integration tests on postgres in https://github.com/learningequality/kolibri/
pull/9571

• Fix headers in content summary logs by forcing unicode literals in https://github.com/learningequality/kolibri/
pull/9602

2.13. Release Notes 151

https://github.com/learningequality/kolibri/pull/9587
https://github.com/learningequality/kolibri/pull/9587
https://github.com/learningequality/kolibri/pull/9635
https://github.com/learningequality/kolibri/pull/9571
https://github.com/learningequality/kolibri/pull/9571
https://github.com/learningequality/kolibri/pull/9602
https://github.com/learningequality/kolibri/pull/9602

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Changed

• Improve the importcontent --fail-on-error option in https://github.com/learningequality/kolibri/pull/
9591

2.13.8 0.15.6

Added

• Check node being available on filtered queryset to prevent index error. by @rtibbles in https://github.com/
learningequality/kolibri/pull/9539

• Force translations in bulk export/import of user data by @jredrejo in https://github.com/learningequality/kolibri/
pull/9557

• Ensure peer import and sync tasks for data and content work with servers using a prefix path by @rtibbles in
https://github.com/learningequality/kolibri/pull/9533

Changed

• Changes in 0.15.x to use kolibri with external plugins by @jredrejo in https://github.com/learningequality/
kolibri/pull/9543

• Don’t use multiprocessing for downloads. by @rtibbles in https://github.com/learningequality/kolibri/pull/9560

Fixed

• Update morango and stop locking sync when db backend is postgres by @bjester in https://github.com/
learningequality/kolibri/pull/9556

• Improve facility sync status reporting to users by @MisRob in https://github.com/learningequality/kolibri/pull/
9541

• Fix show more of top level resources by @marcellamaki in https://github.com/learningequality/kolibri/pull/9555

• Clean up theme regressions by @rtibbles in https://github.com/learningequality/kolibri/pull/9558

• Move CACHES import into function scope to prevent side effects. by @rtibbles in https://github.com/
learningequality/kolibri/pull/9561

2.13.9 0.15.5

Overview

This release fixes a regression with quiz display for non-admins.

152 Chapter 2. Table of contents

https://github.com/learningequality/kolibri/pull/9591
https://github.com/learningequality/kolibri/pull/9591
https://github.com/learningequality/kolibri/pull/9539
https://github.com/learningequality/kolibri/pull/9539
https://github.com/learningequality/kolibri/pull/9557
https://github.com/learningequality/kolibri/pull/9557
https://github.com/learningequality/kolibri/pull/9533
https://github.com/learningequality/kolibri/pull/9543
https://github.com/learningequality/kolibri/pull/9543
https://github.com/learningequality/kolibri/pull/9560
https://github.com/learningequality/kolibri/pull/9556
https://github.com/learningequality/kolibri/pull/9556
https://github.com/learningequality/kolibri/pull/9541
https://github.com/learningequality/kolibri/pull/9541
https://github.com/learningequality/kolibri/pull/9555
https://github.com/learningequality/kolibri/pull/9558
https://github.com/learningequality/kolibri/pull/9561
https://github.com/learningequality/kolibri/pull/9561

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Fixed

• Clean up state management for user management page in https://github.com/learningequality/kolibri/pull/9535

• Fix quiz display for non-admins in https://github.com/learningequality/kolibri/pull/9545

2.13.10 0.15.4

Overview

This release of Kolibri includes security fixes to reduce the vulnerability of online Kolibri instances to discovery of
user credentials and to sanitize exported CSV files.

Additional changes include small improvements to coach workflows in quiz and lesson workflows and fixing a regres-
sion with searching for users during class assignment.

Added

• Restrict exclude coach for to assigned coaches only in https://github.com/learningequality/kolibri/pull/9453

• Content dir argument in https://github.com/learningequality/kolibri/pull/9463

Changed

• Enable “continue” in quiz creation only once exercises selected in https://github.com/learningequality/kolibri/
pull/9515

• Update bottom bar text in lesson resources to say save on changes in https://github.com/learningequality/kolibri/
pull/9516

Fixed

• add .trim to v-model for username in https://github.com/learningequality/kolibri/pull/9514

• API and CSV fixes in https://github.com/learningequality/kolibri/pull/9523

• Fix missing search results in coach quiz creation in https://github.com/learningequality/kolibri/pull/9522

• Fixed regression: search functionality for assigning coaches and enrolling learners in https://github.com/
learningequality/kolibri/pull/#9525

2.13.11 0.15.3

Overview of new features

The goal of this release was to make improvements to the accessibility of Kolibri and to content display. Fixes include
improvements to the focus outline that appears for keyboard navigation and fixes to notifications used in screen readers,
as well as small improvements to content layout.

2.13. Release Notes 153

https://github.com/learningequality/kolibri/pull/9535
https://github.com/learningequality/kolibri/pull/9545
https://github.com/learningequality/kolibri/pull/9453
https://github.com/learningequality/kolibri/pull/9463
https://github.com/learningequality/kolibri/pull/9515
https://github.com/learningequality/kolibri/pull/9515
https://github.com/learningequality/kolibri/pull/9516
https://github.com/learningequality/kolibri/pull/9516
https://github.com/learningequality/kolibri/pull/9514
https://github.com/learningequality/kolibri/pull/9523
https://github.com/learningequality/kolibri/pull/9522
https://github.com/learningequality/kolibri/pull/#9525
https://github.com/learningequality/kolibri/pull/#9525

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Additions and Fixes: Accessibility

• Update firefox bookmarks cards focus outline https://github.com/learningequality/kolibri/pull/9409

• Update side panel focus trapping https://github.com/learningequality/kolibri/pull/9408

• Adds aria labels to immersive toolbar buttons for back and close https://github.com/learningequality/kolibri/pull/
9411

• Adds aria-live=polite to the global snackbar component https://github.com/learningequality/kolibri/pull/9410

• Adjust padding for visible focus outline on bottom bar buttons in https://github.com/learningequality/kolibri/
pull/9478

Additions and Fixes: Content Display

• Fix pagination issues for facility user page https://github.com/learningequality/kolibri/pull/9422

• Push PDF pages rendering below full screen bar https://github.com/learningequality/kolibri/pull/9439

• Fix X-Axis display for perseus graphs https://github.com/learningequality/kolibri/pull/9446

• Remove shrink ray from TopicsPage content side panel https://github.com/learningequality/kolibri/pull/9449

• Improve icon size in Cagetgory selection modal https://github.com/learningequality/kolibri/pull/8938

• Fix pagination user tables https://github.com/learningequality/kolibri/pull/9450

• Restrict exclude coach for to assigned coaches only https://github.com/learningequality/kolibri/pull/453

Changes

• Ensure all file handlers use utf-8 encoding https://github.com/learningequality/kolibri/pull/9401

• Upgrade morango to v0.6.13 https://github.com/learningequality/kolibri/pull/9445

• 0.14 into 0.15 https://github.com/learningequality/kolibri/pull/9447

• Upgrade KDS to v1.3.1-beta0 https://github.com/learningequality/kolibri/pull/9459

2.13.12 0.15.2

Internationalization and localization

New language support for: Ukrainian

Added

• Additional gherkin scenarios https://github.com/learningequality/kolibri/pull/9130

154 Chapter 2. Table of contents

https://github.com/learningequality/kolibri/pull/9409
https://github.com/learningequality/kolibri/pull/9408
https://github.com/learningequality/kolibri/pull/9411
https://github.com/learningequality/kolibri/pull/9411
https://github.com/learningequality/kolibri/pull/9410
https://github.com/learningequality/kolibri/pull/9478
https://github.com/learningequality/kolibri/pull/9478
https://github.com/learningequality/kolibri/pull/9422
https://github.com/learningequality/kolibri/pull/9439
https://github.com/learningequality/kolibri/pull/9446
https://github.com/learningequality/kolibri/pull/9449
https://github.com/learningequality/kolibri/pull/8938
https://github.com/learningequality/kolibri/pull/9450
https://github.com/learningequality/kolibri/pull/453
https://github.com/learningequality/kolibri/pull/9401
https://github.com/learningequality/kolibri/pull/9445
https://github.com/learningequality/kolibri/pull/9447
https://github.com/learningequality/kolibri/pull/9459
https://github.com/learningequality/kolibri/pull/9130

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Changed

• Bump morango to v0.6.10 https://github.com/learningequality/kolibri/pull/9168

• Pin windows installer to 1.5.0 https://github.com/learningequality/kolibri/pull/9200

• Pin django js asset https://github.com/learningequality/kolibri/pull/9163

• Compress HTML files for serving https://github.com/learningequality/kolibri/pull/9197

• Disable mac app pipeline by @rtibbles in https://github.com/learningequality/kolibri/pull/9257

• SECURE_CONTENT_TYPE_NOSNIFF set to True https://github.com/learningequality/kolibri/pull/9195

Fixed

• Content import, deletion, and remote_content settings fixes (#9242, #9337, #9246, #8506)

• Add check for notification to avoid il8n error in CoreBase https://github.com/learningequality/kolibri/pull/
9138

• Redirect for Bookmarks when user is not logged in https://github.com/learningequality/kolibri/pull/9142

• Delete any annotated channelmetadata many to many fields to avoid integrity errors https://github.com/
learningequality/kolibri/pull/9141

• Ensure deprovisioning management command deletes DMC https://github.com/learningequality/kolibri/pull/
9208

• Fix Python requires to prevent install on incompatible Python versions https://github.com/learningequality/
kolibri/pull/9296

2.13.13 0.15.1

Overview of new features

The goals of this release were to fix a bug preventing proper syncing of an individual user’s data across multiple devices
and to made some small frontend improvements

Added

• Deprecation warnings for Python 3.4 and 3.5

• Added auto-alignment property for text display in cards, based on the language

• Allow untranslated headers in csv imports and correct serialization into json

2.13. Release Notes 155

https://github.com/learningequality/kolibri/pull/9168
https://github.com/learningequality/kolibri/pull/9200
https://github.com/learningequality/kolibri/pull/9163
https://github.com/learningequality/kolibri/pull/9197
https://github.com/learningequality/kolibri/pull/9257
https://github.com/learningequality/kolibri/pull/9195
https://github.com/learningequality/kolibri/pull/9138
https://github.com/learningequality/kolibri/pull/9138
https://github.com/learningequality/kolibri/pull/9142
https://github.com/learningequality/kolibri/pull/9141
https://github.com/learningequality/kolibri/pull/9141
https://github.com/learningequality/kolibri/pull/9208
https://github.com/learningequality/kolibri/pull/9208
https://github.com/learningequality/kolibri/pull/9296
https://github.com/learningequality/kolibri/pull/9296

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Changed

• Updated morango to v0.6.8 to support syncing fixes

• Bump zeroconf for fix to properly trigger service update events

• Bump KDS version to v1.3.0

• Updated translations to support minor translation fixes

• Updated gherkin scenarios for new features

• Content API: Change default ordering to combination of “lft” and “id”

Fixed

• Keyboard accessibility/tab navigation focusing for searching and filtering

• Allow for scrolling in side panel, and have side panel always take up full height of page even with 0 results

• Small UI improvements including focus ring spacing, button alignment

• Hide hints column in Perseus renderer when it could not be displayed to improve display on smaller screens

• Handle no xAPI statements existing when calculating H5P and HTML5 progress

• Don’t package core node_modules dir

• Refactor card components for consistency and comprehensibility

• Address tech debt around KDS theming colors

• Fixed several front end console errors

• Ensure that we filter by subset_of_users_device on network location API

2.13.14 0.15.0

Internationalization and localization

New language support for: Hausa, Georgian, Indonesian, Mozambican Portuguese, and Greek

Overview of major new features

This release includes a new Learn experience featuring:

• An updated Home page with new layout and interactions

• A new library page featuring a better content browsing, filtering, and search experience

• An update page for browsing individual channels, with new layout and browse/search interactions

• A new bookmarks page and ability to bookmark content within the content renderer

• Sync capabilities for Subset of Users Devices (SoUDs)

Selected high-level technical updates:

• Adding API for SoUD devices, allowing them to request syncing

• Updates to Zeroconf to support SoUD syncing

156 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• Updates to progress tracking

• Consolidation of exam logging

• Fix dataset mismatch between exams and lessons, to allow for syncing

• Adding content metadata search, API, and fields

Fixed

• #8442 Segments SQLite databases to allow concurrent writes to SyncQueue and NetworkLocation models

• #8446 Forces Learner only device sync request retries when server responds with 500+ status code

• #8438 Fixes failure to sync FacilityUser updates when a login has occurred on a Learner only device prior to
syncing

• #8438 Fixes failure to sync all updated records when multiple learner only devices have been setup for a single
FacilityUser

• #8069 Fix backdrop not being shown while searching resources on mobile

• #8000 Ensure progress_fraction is propagated through resource API

• #7983 Validate usernames during sign-in flow, fix bug in facility settings page

• #7981 Correct the component namespace in the JSON files

• #7953 Fix non-localized numerals

• #7951 Tasks queue cleared on server start

• #7932 Fix DemoBanner focus

• #8174 Fix errors from ContentNodeResource changes

• #8162 Fix dynamic file discovering and serving on Windows

• (#8159, #8132) Fix IE11 compatibility

• #8199 Don’t modify lessons when content is deleted

• #8133 Prevent iterable changes size during iteration

• #8121 Error properly on startup

• #8103 Update values viewset implementation and pagination

• #8102 Fix KLabeledIcon UI

• #8101 Stop TextTruncator flash of full text before truncation

Changed

• #8220 Update reference to most recent Kolibri Design System

• #8194 Update data flow docs for accuracy

• #8088 Update DeviceSettingsPage layout. Add labels, tests

• #7936 Change template for personal facility name to “Home facility for {name}”

• #7928 Update memberships, roles, and permissions handling and validation

• #8195 Use a double tap strategy to ensure against zombies

2.13. Release Notes 157

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• #8184 Bump morango version to 0.5.6

• #8168 Use consistent “not started” icon and background color in AnswerHistory and AttemptLogList

• #8143 Increase scrolling room for question lists in MultiPanelLayout

• #8130 Replace migration applied check

• #8123 Don’t use KResponsiveElementMixin in all ContentCards

• #8592 Fix quiz log syncing

Added

• (#8185, #8595) Add setup wizard for SoUD configuration

• #8229 Add SoUD setup via command line

• (#8202 , #8247 , #8329) Add UI for sync status reporting with notifications for coaches and learners

• (#8192, #8205) Create user sync status tracking, add add permissions to model

• (#8333, #8342, #8345, #8349, #8262) Create queue for SoUD syncing

• #8223 Add notification generation during cleanup stage of sync

• #8222 Add device info versioning

• #8219 Assignment handling within single-user syncing

• #8126 Create API for a subset of user devices to request permission to sync

• #8122 Zeroconf broadcast of SoUD status

• #8165 Initiate auto-syncing from zeroconf

• #8228 Sidechannel loading of assignments

• (#8212, #8215) Create channel-based quizzes, and corresponding gherkin scenarios

• #8095 Add Bookmarks API

• #8084 Allow Kolibri themes to provide a “Photo credit” for the Sign-In page background image

• #8043 Add explicit include_coach_content filter instead of role filter

• (#7989, #8214) Frontend only H5P Rendering and xAPI progress tracking integration

• #7947 Open CSV file with utf-8 encoding in Py3

• #7921 Add content tags to ContentNodeViewset

• #7939 Add endpoint to check for duplicate username and use it to check for existing username while creating an
account

• (#8150, #8151) Add learning activity bar component, constants, and icon components

• (#8190, #8180) Add support for multiple learning activities icon, and create related constants

• #8186 Create API endpoint for Tasks backend

• #8177 Return learning_activities and duration from contentnode endpoints

• #8142 Add task decorators and task APIs for functions registered via decorators

• #8138 Add Tree viewset for retrieving nested, paginated views of topic trees

• #8136 Add new card design to AllClassesPage and ClassAssignmentPage and add base card elements

158 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• #8134) Update navigateTo for non-custom HTML5 Apps

• (#8118, #8146) Add @vue-composition-api plugin, and expose through apiSpec, so it is available to all SPAs

• #8117 Add vacuum for morango tables in Postgresql databases

• #8367 Ensure the user will see the welcome modal after login

• #8370 Restart zeroconf after setup

• #8383 filter SoUD devices when scanning the network to import new facilities

• #8385 Do not create accounts in Subset of users devices

• #8411 Upgrade zeroconf

• #8412 Reduce default sync retry interval

• #8413 Reuse kolibriLogin to begin user sessions in the setup wizard

• #8596 Add new icons

• #8742 Allow facility forking and recreation

(Full Release Notes)

(0.15.0 Github milestone)

2.13.15 0.14.7

Internationalization and localization

• Updated localizations

Fixed

• #7766 Content imported by administrators was not immediately available for learners to use

• #7869 Unlisted channels would not appear in list in channel import-workflow after providing token

• #7810 Learners’ new passwords were not being validated on the Sign-In page

• #7764 Users’ progress on resources was not being properly logged, making it difficult to complete them

• #8003, #8004, #8010 Sign-ins could cause the server to crash if database was locked

• #8003, #7947 Issues downloading CSV files on Windows

Changed

• #7735 Filtering on lists of users returns ranked and approximate matches

• #7733 Resetting a facility’s settings respects the preset (e.g. formal, informal, nonformal) chosen for it during
setup

• #7823 Improved performance on coach pages for facilities with large numbers of classrooms and groups

(0.14.7 Github milestone)

2.13. Release Notes 159

https://github.com/learningequality/kolibri/releases/tag/v0.15.0
https://github.com/learningequality/kolibri/milestone/56?closed=1
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.14.7

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.16 0.14.6

Fixed

• #7725 On Firefox, text in Khmer, Hindi, Marathi, and other languages did not render properly.

• #7722, #7488 After viewing a restricted page, then signing in, users were not redirected back to the restricted
page.

• #7597, #7612 Quiz creation workflow did not properly validate the number of questions

(0.14.6 Github milestone)

2.13.17 0.14.5

(Note: 0.14.4 contained a critical issue and was superseded by 0.14.5)

Changed

• File downloads now run concurrently, taking better advantage of a device’s bandwidth and reducing the time
needed to import resources from Kolibri Studio or other content sources

• When setting up a new device using the Setup Wizard’s “Quick Start” option, the “Allow learners to create
accounts” setting is enabled by default.

• The provisiondevice management command no longer converts the user-provided facility name to all lower-
case

• Markdown descriptions for resources now preserve line breaks from the original source

Fixed

• Multiple bugs when creating, editing, and copying quizzes/lessons

• Multiple bugs when navigating throughout the Coach page

• Multiple bugs specific to Kolibri servers using PostgreSQL

• On Safari, sections of the Facility > Data page would disappear unexpectedly after syncing a facility

• On IE11, it was not possible to setup a new device by importing a facility

• Missing thumbnails on resource cards when searching/browsing in channels

• Numerous visual and accessibility issues

• Facilities could not be renamed if the only changes were to the casing of the name (e.g. changing “Facility” to
“FACILITY”)

(0.14.5 Github milestone)

160 Chapter 2. Table of contents

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.14.6
https://kolibri.readthedocs.io/en/latest/install/initial_setup.html#quick-start
https://kolibri.readthedocs.io/en/latest/install/initial_setup.html#quick-start
https://kolibri.readthedocs.io/en/latest/install/initial_setup.html#quick-start
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.14.5

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.18 0.14.3

(Note: 0.14.0-2 contained regressions and were superseded by 0.14.3)

Fixed

• Some links were opening in new browser windows

(0.14.3 Github milestone)

2.13.19 0.14.2

Fixed

• Prevent SQL checksum related too many variables errors

(0.14.2 Github milestone)

2.13.20 0.14.1

Changed

• Responsive layout for channel cards of Learn Page changed to use horizontal space more efficiently

Fixed

• Resources could not be removed from lessons

• Inaccurate information on Device > Info page when using Debian installer

(0.14.1 Github milestone)

2.13.21 0.14.0

Internationalization and localization

• Added German

• Added Khmer

• CSV data files have localized headers and filenames

Added

• In the Setup Wizard, users can import an existing facility from peer Kolibri devices on the network

• Facility admins can sync facility data with peer Kolibri devices on the network or Kolibri Data Portal

• Facility admins can import and export user accounts to and from a CSV file

• Channels can display a learner-facing “tagline” on Learn channel list

• Device and facility names can now be edited by admins

2.13. Release Notes 161

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.14.3
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.14.2
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.14.1

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• Super admins can delete facilities from a device

• Quizzes and lessons can be assigned to individual learners in addition to whole groups or classes

• Super admins can view the Facility and Coach pages for all facilities

• Pingbacks to the telemetry server can now be disabled

Changed

• New card layout for channels on Learn Page is more efficient and displays new taglines

• Simplified setup process when using Kolibri for personal use

• Improved sign-in flow, especially for devices with multiple facilities

• The experience for upgrading channels has been improved with resource highlighting, improved statistics, and
more efficient navigation

• Improved icons for facilities, classrooms, quizzes, and other items

• More consistent wording of notifications in the application

• Quizzes and lessons with missing resources are more gracefully handled

• Shut-down times are faster and more consistent

Fixed

• Many visual and user experience issues

• Language filter not working when viewing channels for import/export

• A variety of mobile responsiveness issues have been addressed

(0.14.0 Github milestone)

2.13.22 0.13.3

Changed or fixed

• Fixed: Infinite-loop bug when logging into Kolibri through Internet In A Box (IIAB)

• Fixed: Performance issues and timeouts when viewing large lists of users on the Facility page

• Fixed: Startup errors when Kolibri is installed via pip on non-debian-based Linux distributions

Internationalization and localization

• Added Simplified Chinese

(0.13.3 Github milestone)

162 Chapter 2. Table of contents

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.14.0
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.13.3

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.23 0.13.2

Changed or fixed

• Fixed: In the Device Page, multiple bugs related to managing channels.

• Fixed: Problems viewing African Storybook content on iPads running iOS 9.

Internationalization and localization

• Added Italian

(0.13.2 Github milestone)

2.13.24 0.13.1

Added

• Python version is shown on the ‘Device > Info’ page in the ‘Advanced’ section

• Improved help information when running kolibri --help on the command line

Changed or fixed

• Various layout and UX issues, especially some specific to IE11 and Firefox

• ‘Device > Info’ page not accessible when logged in as a superuser

• Channels unintentionally reordered on ‘Device > Channels’ when new content is imported

• Video captions flashing in different languages when first opening a video

• Changes to channels updated and republished in Studio not being immediately reflected in Kolibri

• Occasional database blocking errors when importing large collections of content from external drives

• Occasional database corruption due to connections not being closed after operations

• Automatic data restoration for corrupted databases

• Recreate cache.db files when starting the Kolibri server to remove database locks that may not have been cleanly
removed in case of an abrupt shut-down.

(0.13.1 Github milestone)

2.13.25 0.13.0

Added

• Improved content management

– Queues and task manager

– Granular deletion

– Improved channel updating

– Disk usage reporting improvements

2.13. Release Notes 163

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.13.2
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.13.1

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

– Auto-discovery of local Kolibri peers

• Demographics collection and reporting

• MacOS app

• High-performance Kolibri Server package for Debian

• Pre-built Raspberry Pi Kolibri image

• Video transcripts

• Downloadable and printable coach reports

• New device settings

• “Skip to content” keyboard link

Changed or fixed

• Preserve ‘unlisted’ status on channels imported from token

• Allow duplicate channel resources to be maintained independently

• Auto-refresh learner assignemnt view

• Unclean shutdowns on very large databases, due to prolonged database cleanup

• Facility admin performance improvements

• Jittering modal scrollbars

• Updated side-bar styling

• Improved form validation behavior

• Improved learner quiz view

• Improved keyboard accessibility

(0.13.0 Github milestone)

2.13.26 0.12.9

Added

• Improved error reporting in Windows

Changed or fixed

• Database vacuum now works correctly

• Fixes related to network detection

• Improve performance of classroom API endpoint to prevent request timeouts

164 Chapter 2. Table of contents

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.13.0

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Internationalization and localization

• Added Korean

(0.12.9 Github milestone)

2.13.27 0.12.8

Changed or fixed

• Fixed: users creating accounts for themselves not being placed in their selected facility

• Fixed: images in Khan Academy exercises not appearing on occasion

• Fixed: “Usage and Privacy” modal not closing when clicking the “Close” button

(0.12.8 Github milestone)

2.13.28 0.12.7

(Note: 0.12.6 contained a regression and was superseded by 0.12.7)

Changed or fixed

• Facility user table is now paginated to improve performance for facilities with large numbers of users.

• Various usability and visual improvements, including improved layout when using a RTL language

• On Windows, kolibri.exe is automatically added to the path in the command prompt

• Improved system clean-up when uninstalling on Windows

Internationalization and localization

• Added Latin American Spanish (ES-419)

(0.12.7 Github milestone)

(0.12.6 Github milestone)

2.13.29 0.12.5

• Upgraded Morango to 0.4.6, fixing startup errors for some users.

(0.12.5 Github milestone)

2.13. Release Notes 165

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.12.9
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.12.8
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.12.7
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.12.6
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.12.5

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.30 0.12.4

Added

• Device Settings Page - The default language can now be changed under Device > Settings. This is the language
that will be used on browsers that have never opened Kolibri before (but can be changed after opening Kolibri
using the language selector).

• Coach Reports - Users can preview quizzes and lessons and edit their details from their associated report, without
having to go to the “Plan” sub-page.

• Added a kolibri manage deleteuser command to remove a user from a server, as well as all other servers
synchronized with it.

• Added a new theming system for customizing various colors that appear in Kolibri.

Changed or fixed

• EPUB documents with large tables are displayed in a single-column, scrollable format to improve their readabil-
ity.

• EPUB viewer now saves font and theme settings between sessions.

• Quiz creation workflow only places unique questions in a quiz, removing duplicates that may appear in a topic
tree.

• Title and name headers are consistently accompanied by icons in Kolibri symbol system to help orient the user.

(0.12.4 Github milestone)

2.13.31 0.12.3

Changed or fixed

• Improved handling of partially-download or otherwise corrupted content databases

• Fixed regression where users could not change their passwords in the Profile page

• Improved PostgreSQL support

• Added fixes related to coach tools

(0.12.3 Github milestone)

2.13.32 0.12.2

Added

• Coaches can edit lessons from the Coach > Reports page

• Coaches can preview and edit quiz details from the Coach > Reports and Plan pages

166 Chapter 2. Table of contents

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.12.4
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.12.3

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Changed or fixed

• Coaches can edit quiz and lesson details and statuses in the same user interface

2.13.33 0.12.2

Added

• Dynamic selection for CherryPy thread count based on available server memory

Changed or fixed

• Alignment of coach report icons when viewed in right-to-left languages corrected

• Fixes to loading of some HTML5 apps

• Lessons are now correctly scoped to their classes for learners

Internationalization and localization

• Added Gujarati

• Fixed missing translations in coach group management

(0.12.2 Github milestone)

2.13.34 0.12.1

Added

• Initial support for uwsgi serving mode.

Changed or fixed

• Fixed 0.12.0 regression in HTML5 rendering that affected African Storybooks and some other HTML5 content.

• Fixed 0.12.0 regression that prevented some pages from loading properly on older versions of Safari/iOS.

Internationalization and localization

• Added Burmese

(0.12.1 Github milestone)

2.13. Release Notes 167

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.12.2
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.12.1

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.35 0.12.0

Added

• Coach Dashboard - added regularly updating notifications and new information architecture for the coach inter-
face, to provide actionable feedback for coaches about learner progress

• New capability for sandboxed HTML5 app content to utilize sessionStorage, localStorage and cookies, with the
latter two restored between user sessions

• Support for enrolling learners in multiple groups in a class

• Management command to reorder channels to provide more customized display in learn

Changed or fixed

• Exams are now known as Quizzes

• Quizzes with content from deleted channels will now show an error message when a learner or coach is viewing
the problems in the quiz or quiz report

• Lessons with content from deleted channels will have those contents automatically removed. If you have created
lessons with deleted content prior to 0.12, learner playlists and coach reports for those lessons will be broken.
To fix the lesson, simply view it as a coach under Coach > Plan, and it will be fixed and updated automatically

• Changes the sub-navigation to a Material Design tabs-like experience

• Make facility log exporting a background process for a better user experience when downloading large logs

• Allow appbar to move off screen when scrolling on mobile, to increase screen real estate

• Kolibri now supports for iOS Safari 9.3+

• Validation is now done in the ‘provisiondevice’ command for the username of the super admin user being created

• Disable import and export buttons while a channel is being downloaded to prevent accidental clicks

• Prevent quizzes and lessons in the same class from being created with the same name

• Update quiz and lesson progress for learners without refreshing the page

• Improved focus rings for keyboard navigation

• Coach content no longer appears in recommendations for non-coach users

• The Kolibri loading animation is now beautiful, and much quicker to load

• Icons and tables are now more standardized across Kolibri, to give a more consistent user experience

• Enable two high contrast themes for EPUB rendering for better accessibility

• Supports accessing Kolibri through uwsgi

168 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Internationalization and localization

• Languages: English, Arabic, Bengali, Bulgarian, Chinyanja, Farsi, French, Fulfulde Mbororoore, Hindi, Marathi,
Portuguese (Brazilian), Spanish, Swahili, Telugu, Urdu, Vietnamese, and Yoruba

(0.12.0 Github milestone)

2.13.36 0.11.1

Added

• Support for RTL EPubs

• Support for Python 3.7

Changed or fixed

• Fullscreen renderer mode now works in Chrome 71

• Account sign up now works when guest access is disabled

• Navigating in and out of exercise detail views is fixed

• Misleading exam submission modal text is now more accurate

• Browsing content tree in exam creation is now faster

• Unavailable content in coach reports is now viewable

• Content import errors are handled better

• Added command to restore availability of content after bad upgrade

Internationalization and localization

• Added Fufulde Mboroore

(0.11.1 Github milestone)

2.13.37 0.11.0

Added

• Support for EPUB-format electronic books

• Upgrades to exam and lesson creation, including search functionality and auto-save

• New error handling and reporting functionality

• Channel import from custom network locations

• Setting for enabling or disabling guest access

• Basic commands to help with GDPR compliance

• Privacy information to help users and admins understand how their data is stored

2.13. Release Notes 169

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.12.0
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.11.1

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

Changed or fixed

• Improvements to rendering of some pages on smaller screens

• Improvements to search behavior in filtering and handling of large result sets

• Improvements to the setup wizard based on user feedback and testing

• Improvements to user management, particularly for admins and super admins

• Fix: Allow usernames in non-latin alphabets

• Fix: Drive listing and space availability reporting

• Auto-refresh in coach reports

• Added more validation to help with log-in

• Security: upgraded Python cryptography and pyopenssl libraries for CVE-2018-10903

Internationalization and localization

• Languages: English, Arabic, Bengali, Bulgarian, Chinyanja, Farsi, French, Hindi, Marathi, Portuguese (Brazil-
ian), Spanish, Swahili, Telugu, Urdu, Vietnamese, and Yoruba

• Improved consistency of language across the application, and renamed “Superuser” to “Super admin”

• Many fixes to translation and localization

• Consistent font rendering across all languages

(0.11.0 Github milestone)

2.13.38 0.10.3

Internationalization and localization

• Added Mexican Spanish (es_MX) and Bulgarian (bg)

Fixed

• Upgrade issue upon username conflict between device owner and facility user

• Channel import listing of USB devices when non-US locale

• Counts for coach-specific content would in some cases be wrongly displayed

(0.10.3 Github milestone)

170 Chapter 2. Table of contents

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.11.0
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.10.3

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.39 0.10.2

• Performance improvements and bug fixes for content import

• Exam creation optimizations

(0.10.2 Github milestone)

2.13.40 0.10.1

• Bug fix release

• Several smaller UI fixes

• Fixes for SSL issues on low-spec devices / unstable connectivity

• Compatibility fixes for older system libraries

(0.10.1 Github milestone)

2.13.41 0.10.0

• Support for coach-specific content

• Content import/export is more reliable and easier to use

• Search has improved results and handles duplicate items

• Display of answer history in learner exercises is improved

• Login page is more responsive

• Windows-specific improvements and bug fixes

• New Kolibri configuration file

• Overall improved performance

• Auto-play videos

• Various improvements to PDF renderer

• Command to migrate content directory location

• Languages: English, Arabic, Bengali, Chinyanja, Farsi, French, Hindi, Kannada, Marathi, Burmese, Portuguese
(Brazilian), Spanish, Swahili, Tamil, Telugu, Urdu, Yoruba, and Zulu

(0.10.0 Github milestone)

2.13.42 0.9.3

• Compressed database upload

• Various bug fixes

(0.9.3 Github milestone)

2.13. Release Notes 171

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.10.2
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.10.1
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.10.0
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.9.3

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.43 0.9.2

• Various bug fixes

• Languages: English, Arabic, Bengali, Chinyanja, Farsi, French, Hindi, Marathi, Portuguese (Brazilian), Spanish,
Swahili, Tamil, Telugu, Urdu, Yoruba, and Zulu

(0.9.2 Github milestone)

2.13.44 0.9.1

• Fixed regression that caused very slow imports of large channels

• Adds new ‘import users’ command to the command-line

• Various consistency and layout updates

• Exercises with an error no longer count as ‘correct’

• Fixed issue with password-less sign-on

• Fixed issue with editing lessons

• Various other fixes

• Languages: English, Arabic, Chinyanja, Farsi, French, Hindi, Marathi, Portuguese (Brazilian), Spanish, Swahili,
Tamil, Telugu, and Urdu

(0.9.1 Github milestone)

2.13.45 0.9.0

• Consistent usage of ‘coach’ terminology

• Added class-scoped coaches

• Support for multi-facility selection on login

• Cross-channel exams

• Show correct and submitted answers in exam reports

• Added learner exam reports

• Various bug fixes in exam creation and reports

• Various bug fixes in coach reports

• Fixed logging on Windows

• Added ability for coaches to make copies of exams

• Added icon next to language-switching functionality

• Languages: English, Arabic, Farsi, French, Hindi, Spanish, Swahili, and Urdu

(0.9.0 Github milestone)

172 Chapter 2. Table of contents

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.9.2
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.9.1
https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.9.0

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.46 0.8.0

• Added support for assigning content using ‘Lessons’

• Updated default landing pages in Learn and Coach

• Added ‘change password’ functionality to ‘Profile’ page

• Updates to text consistency

• Languages: English, Spanish, Arabic, Farsi, Urdu, French, Haitian Creole, and Burmese

• Various bug fixes

(0.8.0 Github milestone)

2.13.47 0.7.2

• Fix issue with importing large channels on Windows

• Fix issue that prevented importing topic thumbnail files

2.13.48 0.7.1

• Improvements and fixes to installers including Windows & Debian

• Updated documentation

2.13.49 0.7.0

• Completed RTL language support

• Languages: English, Spanish, Arabic, Farsi, Swahili, Urdu, and French

• Support for Python 3.6

• Split user and developer documentation

• Improved lost-connection and session timeout handling

• Added ‘device info’ administrator page

• Content search integration with Studio

• Granular content import and export

2.13.50 0.6.2

• Consistent ordering of channels in learner views

2.13. Release Notes 173

https://github.com/learningequality/kolibri/issues?q=label%3Achangelog+milestone%3A0.8.0

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.51 0.6.1

• Many mobile-friendly updates across the app

• Update French, Portuguese, and Swahili translations

• Upgraded Windows installer

2.13.52 0.6.0

• Cross-channel searching and browsing

• Improved device onboarding experience

• Improved device permissions experience (deprecated ‘device owner’, added ‘superuser’ flag and import permis-
sion)

• Various channel import/export experience and stability improvements

• Responsive login page

• Dynamic language switching

• Work on integrated living style guide

• Added beta support for right-to-left languages

• Improved handling of locale codes

• Added support for frontend translation outside of Vue components

• Added an open-source ‘code of conduct’ for contributors

• By default run PEX file in foreground on MacOS

• Crypto optimizations from C extensions

• Deprecated support for HTML in translation strings

• Hide thumbnails from content ‘download’ button

• Automatic database backup during upgrades. #2365

• . . . and many other updates and fixes

2.13.53 0.5.3

• Release timeout bug fix from 0.4.8

2.13.54 0.5.2

• Release bug fix from 0.4.7

174 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.55 0.5.1

• Python dependencies: Only bundle, do not install dependencies in system env #2299

• Beta Android support

• Fix ‘importchannel’ command #2082

• Small translation improvements for Spanish, French, Hindi, and Swahili

2.13.56 0.5.0

• Update all user logging related timestamps to a custom datetime field that includes timezone info

• Added daemon mode (system service) to run kolibri start in background (default!) #1548

• Implemented kolibri stop and kolibri status #1548

• Newly imported channels are given a ‘last_updated’ timestamp

• Add progress annotation for topics, lazily loaded to increase page load performance

• Add API endpoint for getting number and total size of files in a channel

• Migrate all JS linting to prettier rather than eslint

• Merge audio_mp3_render and video_mp4_render plugins into one single media_player plugin

• KOLIBRI_LISTEN_PORT environment variable for specifying a default for the –port option #1724

2.13.57 0.4.9

• User experience improvements for session timeout

2.13.58 0.4.8

• Prevent session timeout if user is still active

• Fix exam completion timestamp bug

• Prevent exercise attempt logging crosstalk bug

• Update Hindi translations

2.13.59 0.4.7

• Fix bug that made updating existing Django models from the frontend impossible

2.13. Release Notes 175

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.60 0.4.6

• Fix various exam and progress tracking issues

• Add automatic sign-out when browser is closed

• Fix search issue

• Learner UI updates

• Updated Hindi translations

2.13.61 0.4.5

• Frontend and backend changes to increase performance of the Kolibri application under heavy load

• Fix bug in frontend simplified login code

2.13.62 0.4.4

• Fix for Python 3 compatibility in Whl, Windows and Pex builds #1797

• Adds Mexican Spanish as an interface language

• Upgrades django-q for bug fixes

2.13.63 0.4.3

• Speed improvements for content recommendation #1798

2.13.64 0.4.2

• Fixes for morango database migrations

2.13.65 0.4.1

• Makes usernames for login case insensitive #1733

• Fixes various issues with exercise rendering #1757

• Removes wrong CLI usage instructions #1742

2.13.66 0.4.0

• Class and group management

• Learner reports #1464

• Performance optimizations #1499

• Anonymous exercises fixed #1466

• Integrated Morango, to prep for data syncing (will require fresh database)

• Adds Simplified Login support as a configurable facility flag

176 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

2.13.67 0.3.3

• Turns video captions on by default

2.13.68 0.3.2

• Updated translations for Portuguese and Kiswahili in exercises.

• Updated Spanish translations

2.13.69 0.3.1

• Portuguese and Kaswihili updates

• Windows fixes (mimetypes and modified time)

• VF sidebar translations

2.13.70 0.3.0

• Add support for nested URL structures in API Resource layer

• Add Spanish and Swahili translations

• Improve pipeline for translating plugins

• Add search back in

• Content Renderers use explicit new API rather than event-based loading

2.13.71 0.2.0

• Add authentication for tasks API

• Temporarily remove ‘search’ functionality

• Rename ‘Learn/Explore’ to ‘Recommended/Topics’

• Add JS-based ‘responsive mixin’ as alternative to media queries

• Replace jeet grids with pure.css grids

• Begin using some keen-ui components

• Update primary layout and navigation

• New log-in page

• User sign-up and profile-editing functionality

• Versioning based on git tags

• Client heartbeat for usage tracking

• Allow plugins to override core components

• Wrap all user-facing strings for I18N

• Log filtering based on users and collections

• Improved docs

2.13. Release Notes 177

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• Pin dependencies with Yarn

• ES2015 transpilation now Bublé instead of Babel

• Webpack build process compatible with plugins outside the kolibri directory

• Vue2 refactor

• HTML5 app renderer

2.13.72 0.1.1

• SVG inlining

• Exercise completion visualization

• Perseus exercise renderer

• Coach reports

2.13.73 0.1.0 - MVP

• Improved documentation

• Conditional (cancelable) JS promises

• Asset bundling performance improvements

• Endpoint indexing into zip files

• Case-insensitive usernames

• Make plugins more self-contained

• Client-side router bug fixes

• Resource layer smart cache busting

• Loading ‘spinner’

• Make modals accessible

• Fuzzy searching

• Usage data export

• Drive enumeration

• Content interaction logging

• I18N string extraction

• Channel switching bug fixes

• Modal popups

• A11Y updates

• Tab focus highlights

• Learn app styling changes

• User management UI

• Task management

• Content import/export

178 Chapter 2. Table of contents

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

• Session state and login widget

• Channel switching

• Setup wizard plugin

• Documentation updates

• Content downloading

2.13.74 0.0.1 - MMVP

• Page titles

• Javascript logging module

• Responsiveness updates

• A11Y updates

• Cherrypy server

• Vuex integration

• Stylus/Jeet-based grids

• Support for multiple content DBs

• API resource retrieval and caching

• Content recommendation endpoints

• Client-side routing

• Content search

• Video, Document, and MP3 content renderers

• Initial VueIntl integration

• User management API

• Vue.js integration

• Learn app and content browsing

• Content endpoints

• Automatic inclusion of requirements in a static build

• Django JS Reverse with urls representation in kolibriGlobal object

• Python plugin API with hooks

• Webpack build pipeline, including linting

• Authentication, authorization, permissions

• Users, Collections, and Roles

2.13. Release Notes 179

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

180 Chapter 2. Table of contents

PYTHON MODULE INDEX

k
kolibri.core.content.api, 52
kolibri.plugins.hooks, 87
kolibri.plugins.registry, 86
kolibri.utils.version, 96

l
le_utils.constants.content_kinds, 52
le_utils.constants.file_formats, 52
le_utils.constants.format_presets, 52

181

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

182 Python Module Index

INDEX

B
BaseContentNodeMixin (class in

kolibri.core.content.api), 52
BaseContentNodeTreeViewset (class in

kolibri.core.content.api), 52

C
ChannelMetadataViewSet (class in

kolibri.core.content.api), 53
CharInFilter (class in kolibri.core.content.api), 53
ContentNodeBookmarksViewset (class in

kolibri.core.content.api), 53
ContentNodeGranularViewset (class in

kolibri.core.content.api), 53
ContentNodeProgressViewset (class in

kolibri.core.content.api), 53
ContentNodeSearchViewset (class in

kolibri.core.content.api), 54
ContentNodeTreeViewset (class in

kolibri.core.content.api), 54
ContentNodeViewset (class in

kolibri.core.content.api), 54
ContentRequestViewset (class in

kolibri.core.content.api), 55

D
descendants() (kolibri.core.content.api.ContentNodeViewset

method), 54
dispatch() (kolibri.core.content.api.ChannelMetadataViewSet

method), 53
dispatch() (kolibri.core.content.api.ContentNodeTreeViewset

method), 54
dispatch() (kolibri.core.content.api.ContentNodeViewset

method), 54
dispatch() (kolibri.core.content.api.RemoteChannelViewSet

method), 55

F
FileViewset (class in kolibri.core.content.api), 55

G
get_queryset() (kolibri.core.content.api.ContentNodeBookmarksViewset

method), 53
get_queryset() (kolibri.core.content.api.ContentNodeGranularViewset

method), 53
get_queryset() (kolibri.core.content.api.ContentNodeProgressViewset

method), 53
get_queryset() (kolibri.core.content.api.ContentRequestViewset

method), 55
get_queryset() (kolibri.core.content.api.FileViewset

method), 55
get_queryset() (kolibri.core.content.api.UserContentNodeViewset

method), 56
get_serializer_context()

(kolibri.core.content.api.ContentNodeGranularViewset
method), 53

I
initial() (kolibri.core.content.api.ContentNodeSearchViewset

method), 54
InternalContentNodeMixin (class in

kolibri.core.content.api), 55

K
kolibri.core.content.api

module, 52
kolibri.plugins.hooks

module, 86
kolibri.plugins.registry

module, 86
kolibri.utils.version

module, 96

L
le_utils.constants.content_kinds

module, 52
le_utils.constants.file_formats

module, 52
le_utils.constants.format_presets

module, 52
list() (kolibri.core.content.api.RemoteChannelViewSet

method), 56

183

Kolibri developer documentation, Release 0.16.1.dev0+git.20240424234141

M
metadata_cache() (in module kolibri.core.content.api),

56
module

kolibri.core.content.api, 52
kolibri.plugins.hooks, 86
kolibri.plugins.registry, 86
kolibri.utils.version, 96
le_utils.constants.content_kinds, 52
le_utils.constants.file_formats, 52
le_utils.constants.format_presets, 52

N
no_cache_on_method() (in module

kolibri.core.content.api), 56

O
OptionalContentNodePagination (class in

kolibri.core.content.api), 55
OptionalPageNumberPagination (class in

kolibri.core.content.api), 55
OptionalPagination (class in

kolibri.core.content.api), 55

P
pagination_class (kolibri.core.content.api.ContentNodeBookmarksViewset

attribute), 53
pagination_class (kolibri.core.content.api.ContentNodeProgressViewset

attribute), 54
pagination_class (kolibri.core.content.api.ContentNodeViewset

attribute), 54
pagination_class (kolibri.core.content.api.ContentRequestViewset

attribute), 55
pagination_class (kolibri.core.content.api.FileViewset

attribute), 55
pagination_class (kolibri.core.content.api.UserContentNodeViewset

attribute), 56

R
recommendations_for()

(kolibri.core.content.api.ContentNodeViewset
method), 55

RemoteChannelViewSet (class in
kolibri.core.content.api), 55

RemoteViewSet (class in kolibri.core.content.api), 56
retrieve() (kolibri.core.content.api.BaseContentNodeTreeViewset

method), 52
retrieve() (kolibri.core.content.api.ContentNodeTreeViewset

method), 54
retrieve() (kolibri.core.content.api.RemoteChannelViewSet

method), 56

S
search() (kolibri.core.content.api.ContentNodeSearchViewset

method), 54
serializer_class (kolibri.core.content.api.ContentNodeGranularViewset

attribute), 53
serializer_class (kolibri.core.content.api.ContentRequestViewset

attribute), 55
serializer_class (kolibri.core.content.api.FileViewset

attribute), 55

U
UserContentNodeViewset (class in

kolibri.core.content.api), 56
UUIDInFilter (class in kolibri.core.content.api), 56

184 Index

	What is Kolibri?
	Table of contents
	Contributing
	Ways to contribute
	Talk to us
	Translate
	Give feedback
	Write code
	Write documentation

	Code of Conduct
	Code of Conduct
	1. Purpose
	2. Open Source Citizenship
	3. Expected Behavior
	4. Unacceptable Behavior
	5. Consequences of Unacceptable Behavior
	6. Reporting Guidelines
	7. Addressing Grievances
	8. Scope
	9. Contact info
	10. License and attribution

	Reporting Guidelines
	What happens after you file a report?
	Enforcement Manual
	The Code of Conduct Committee
	How the committee will respond to reports
	Acting Unilaterally
	Resolutions
	Conflicts of Interest

	Attribution

	Contributors

	Getting started
	Prerequisites
	Git and GitHub
	Checking out the code
	Python and Pip
	Python virtual environment
	Environment variables
	Install Python dependencies
	Install Node.js, Yarn and other dependencies
	Database setup

	Running the server
	Development server
	Production server
	Separate servers
	Running in App Mode

	Editor configuration
	Vue development tools
	Sample resources and data
	Linting and auto-formatting
	Manual linting and formatting
	Pre-commit hooks

	Design system
	Updating documentation
	Automated testing
	Manual testing
	Submitting a pull request
	Development using Docker
	Development server
	Building a pex file
	Production server

	Tech stack overview
	Server
	Client
	Developer docs
	Build infrastructure
	Automated testing

	How To Guides
	Installing pyenv
	Prerequisites
	Install
	Installation of pyenv on Windows
	Restart your shell
	Install Python build dependencies
	Installing a Python Version with PyEnv

	Using pyenv-virtualenv
	Virtual Environments
	Using pyenv virtualenv with pyenv
	List existing virtualenvs
	Activate virtualenv
	Delete existing virtualenv

	Using nodeenv
	Instructions

	Rebasing a Pull Request
	Running another Kolibri instance alongside the development server
	Introduction
	Steps

	Running Kolibri with local Kolibri Design System

	Frontend architecture
	Single-page Apps
	Defining a new Kolibri module
	Creating a side nav entry
	Content renderers
	Kolibri Content hooks

	Layout of frontend code
	Shared core functionality
	JS libraries and Vue components
	Styling
	Dynamic core theme
	Bootstrapped data
	Additional functionality

	Vue components
	Design system
	SVG Icons

	Frontend code conventions
	Linting and auto formatting
	Vue.js components
	Styling anti-patterns

	Vuex
	HTML5 API
	Standard Web APIs
	SCORM
	xAPI
	Custom Navigation
	Basic API

	Adding dependencies
	Unit testing
	Frontend build pipeline

	Backend architecture
	Content database module
	Concepts and Definitions
	ContentNode
	File
	ContentDB diagram
	ContentTag
	ChannelMetadata
	ChannelMetadataCache

	Implementation details and workflows
	ContentDBRoutingMiddleware
	get_active_content_database
	set_active_content_database
	using_content_database
	ContentDBRouter
	ContentNode
	File
	Content constants
	Workflows

	API methods
	API endpoints

	Users, auth, and permissions module
	Models
	Concepts and Definitions
	Facility
	Users
	Collections
	Membership
	Roles
	Role-Based Permissions
	Permission Levels

	Implementation details
	Collections
	Facility and FacilityDataset
	Efficient hierarchy calculations
	Managing Roles and Memberships
	Encoding Permission Rules
	Associating permissions with models
	Specifying role-based permissions
	Built-in permissions classes
	Combining permissions classes
	Checking permissions
	Using Kolibri permissions with Django REST Framework

	User log module
	Models
	Concepts and definitions
	Content session logs
	Content summary logs
	Attempt logs
	Exam logs
	User session logs

	Implementation details
	Permissions

	Kolibri plugin architecture
	Enabling and disabling plugins
	How plugins work
	Loading a plugin

	Kolibri Hooks API
	What are hooks
	Where can I find hooks?
	In which order are hooks used/applied?

	An example of a plugin using a hook
	Example implementation
	Usage of the hook

	Defining a plugin
	Creating a plugin
	Learn plugin example

	Kolibri backend tasks system
	Kolibri backend tasks system flow diagram
	Defining tasks via @register_task decorator
	Example usage

	Enqueuing tasks via the POST /api/tasks/tasks/ API endpoint

	Distribution build pipeline
	Make targets
	More on version numbers

	Upgrading
	Upgrade paths

	Learning facility data syncing
	The sync management command
	Integrating with a sync
	Morango sync operations
	Sync hook functions

	Server/client communication
	Server API
	Client resource layer
	Resources
	Models
	Collections

	Data flow

	Development workflow
	Git workflow
	Pull requests
	Submissions
	Git history
	Code Reviews
	Merging PRs
	Copyright and licensing

	Development phases
	Github labels
	Priority
	Changelog
	Work-in-progress
	Development category
	TODO items
	Organizational Tags

	Build system and workflow
	Frequently asked questions
	Design goals
	Overview of Buildkite
	API and vocabulary
	Github integration
	Agent
	The value of self hosted

	Learning Equality’s pipelines
	Pipeline orchestration
	Block steps
	Release builds

	Release process
	Internationalization
	Writing localized strings
	.vue files
	.js files
	common*String modules
	ICU message syntax
	.py files

	RTL language support
	Text alignment
	Behavior
	Iconography
	Content rendererers

	Crowdin workflow
	Prerequisites
	Extracting and uploading sources
	Pre-translation
	Transferring screenshots
	Reviewing screenshots
	Downloading translations to Kolibri

	Adding a newly supported language
	Updating font files

	Configuring language options
	Auditing strings

	Manual testing & QA
	General Notes
	Accessibility (a11y) testing
	Cross-browser and OS testing
	BrowserStack
	Amazon Workspaces
	Local Virtual Machines
	Hardware

	Responsiveness to varying screen sizes
	Slow network connections
	Performance testing with Django Debug Panel
	Generating user data
	Examples for Kolibri with imported channels
	Examples for a fresh Kolibri install (no imported channels)
	Notes

	Collecting client and server errors using Sentry

	Testing with Virtual Machines
	Install VirtualBox
	Linux
	Windows
	Macintosh
	Install VirtualBox Extension Pack

	Kolibri releases
	Test Kolibri in Windows guest
	Download virtual machine images
	Import VM image into VirtualBox
	Configure virtual machines for testing
	Start Virtual Machine
	Recommendations for VM tuning prior to Kolibri installation
	Disable Windows Update and Modules installer

	Install additional browsers - Mozilla Firefox & Google Chrome
	Recommended addons/extensions

	Install Kolibri
	Download minimal content

	Test Kolibri in Linux guest
	Download virtual machine images
	Import and configure Ubuntu VM image into VirtualBox

	Test Kolibri in OSX guest

	Testing Kolibri with app plugin enabled
	The Kolibri app plugin

	Recommended A11y tools
	Style Guides
	A11Y Style Guide

	Firefox Add-ons
	WAVE Web Accessibility Extension
	aXe Accessibility Engine
	WCAG Contrast checker

	Chrome Extensions
	WAVE Evaluation Tool
	Accessibility Developer Tools
	aXe Accessibility Engine
	Accessibility monitor
	NoCoffee vision simulator
	Spectrum
	WCAG Luminosity Contrast Ratio Analyzer

	Bookmarklets/Favelets (browser independent)
	tota11y - an accessibility visualization toolkit
	HTML_CodeSniffer
	Visual ARIA Bookmarklet
	Jim Thatcher’s Favelets

	Color Contrast tools
	Contrast Ratio
	Accessibility Color Wheel
	Color Safe
	Color Palette Accessibility Evaluator
	Contrast Analyzer

	Online A11y validation tools
	AChecker
	Functional Accessibility Evaluator 2.0
	Cynthia Says
	TENON

	Automated A11y testing
	axe-core
	pa11ly
	Tanaguru

	Release Notes
	0.16.0
	Features
	Robust syncing of user data and resources
	Support for quick learner setup and independent learners

	Changes
	Dev documentation/dev updates
	Architectural changes
	API Breaking Changes
	API Additions (non-breaking changes)
	Accessibility improvements

	Deprecations
	Kolibry Design System upgrades

	0.15.12
	Added
	Changed
	Fixed

	0.15.11
	Fixed

	0.15.10
	Added
	Fixed
	Changed

	0.15.9
	Added

	0.15.8
	Added
	Changed
	Fixed

	0.15.7
	Added
	Fixed
	Changed

	0.15.6
	Added
	Changed
	Fixed

	0.15.5
	Overview
	Fixed

	0.15.4
	Overview
	Added
	Changed
	Fixed

	0.15.3
	Overview of new features
	Additions and Fixes: Accessibility
	Additions and Fixes: Content Display
	Changes

	0.15.2
	Internationalization and localization
	Added
	Changed
	Fixed

	0.15.1
	Overview of new features
	Added
	Changed
	Fixed

	0.15.0
	Internationalization and localization
	Overview of major new features
	Fixed
	Changed
	Added

	0.14.7
	Internationalization and localization
	Fixed
	Changed

	0.14.6
	Fixed

	0.14.5
	Changed
	Fixed

	0.14.3
	Fixed

	0.14.2
	Fixed

	0.14.1
	Changed
	Fixed

	0.14.0
	Internationalization and localization
	Added
	Changed
	Fixed

	0.13.3
	Changed or fixed
	Internationalization and localization

	0.13.2
	Changed or fixed
	Internationalization and localization

	0.13.1
	Added
	Changed or fixed

	0.13.0
	Added
	Changed or fixed

	0.12.9
	Added
	Changed or fixed
	Internationalization and localization

	0.12.8
	Changed or fixed

	0.12.7
	Changed or fixed
	Internationalization and localization

	0.12.5
	0.12.4
	Added
	Changed or fixed

	0.12.3
	Changed or fixed

	0.12.2
	Added
	Changed or fixed

	0.12.2
	Added
	Changed or fixed
	Internationalization and localization

	0.12.1
	Added
	Changed or fixed
	Internationalization and localization

	0.12.0
	Added
	Changed or fixed
	Internationalization and localization

	0.11.1
	Added
	Changed or fixed
	Internationalization and localization

	0.11.0
	Added
	Changed or fixed
	Internationalization and localization

	0.10.3
	Internationalization and localization
	Fixed

	0.10.2
	0.10.1
	0.10.0
	0.9.3
	0.9.2
	0.9.1
	0.9.0
	0.8.0
	0.7.2
	0.7.1
	0.7.0
	0.6.2
	0.6.1
	0.6.0
	0.5.3
	0.5.2
	0.5.1
	0.5.0
	0.4.9
	0.4.8
	0.4.7
	0.4.6
	0.4.5
	0.4.4
	0.4.3
	0.4.2
	0.4.1
	0.4.0
	0.3.3
	0.3.2
	0.3.1
	0.3.0
	0.2.0
	0.1.1
	0.1.0 - MVP
	0.0.1 - MMVP

	Python Module Index
	Index

